c# 矩阵求逆(转载)

1.代码思路

1)对矩阵进行合法性检查:矩阵必须为方阵

2)计算矩阵行列式的值(Determinant函数)

3)只有满秩矩阵才有逆矩阵,因此如果行列式的值为0(在代码中以绝对值小于1E-6做判断),则终止函数,报出异常

4)求出伴随矩阵(AdjointMatrix函数)

5)逆矩阵各元素即其伴随矩阵各元素除以矩阵行列式的商

2.函数代码

(注:本段代码只实现了一个思路,可能并不是该问题的最优解)

/// <summary>
/// 求矩阵的逆矩阵
/// </summary>
/// <param name="matrix"></param>
/// <returns></returns>
public static double[][] InverseMatrix(double[][] matrix)
{
    //matrix必须为非空
    if (matrix == null || matrix.Length == 0)
    {
        return new double[][] { };
    }

    //matrix 必须为方阵
    int len = matrix.Length;
    for (int counter = 0; counter < matrix.Length; counter++)
    {
        if (matrix[counter].Length != len)
        {
            throw new Exception("matrix 必须为方阵");
        }
    }

    //计算矩阵行列式的值
    double dDeterminant = Determinant(matrix);
    if (Math.Abs(dDeterminant) <= 1E-6)
    {
        throw new Exception("矩阵不可逆");
    }

    //制作一个伴随矩阵大小的矩阵
    double[][] result = AdjointMatrix(matrix);

    //矩阵的每项除以矩阵行列式的值,即为所求
    for (int i = 0; i < matrix.Length; i++)
    {
        for (int j = 0; j < matrix.Length; j++)
        {
            result[i][j] = result[i][j] / dDeterminant;
        }
    }

    return result;
}

/// <summary>
/// 递归计算行列式的值
/// </summary>
/// <param name="matrix">矩阵</param>
/// <returns></returns>
public static double Determinant(double[][] matrix)
{
    //二阶及以下行列式直接计算
    if (matrix.Length == 0) return 0;
    else if (matrix.Length == 1) return matrix[0][0];
    else if (matrix.Length == 2)
    {
        return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
    }

    //对第一行使用“加边法”递归计算行列式的值
    double dSum = 0, dSign = 1;
    for (int i = 0; i < matrix.Length; i++)
    {
        double[][] matrixTemp = new double[matrix.Length - 1][];
        for (int count = 0; count < matrix.Length - 1; count++)
        {
            matrixTemp[count] = new double[matrix.Length - 1];
        }

        for (int j = 0; j < matrixTemp.Length; j++)
        {
            for (int k = 0; k < matrixTemp.Length; k++)
            {
                matrixTemp[j][k] = matrix[j + 1][k >= i ? k + 1 : k];
            }
        }

        dSum += (matrix[0][i] * dSign * Determinant(matrixTemp));
        dSign = dSign * -1;
    }

    return dSum;
}

/// <summary>
/// 计算方阵的伴随矩阵
/// </summary>
/// <param name="matrix">方阵</param>
/// <returns></returns>
public static double[][] AdjointMatrix(double [][] matrix)
{
    //制作一个伴随矩阵大小的矩阵
    double[][] result = new double[matrix.Length][];
    for (int i = 0; i < result.Length; i++)
    {
        result[i] = new double[matrix[i].Length];
    }

    //生成伴随矩阵
    for (int i = 0; i < result.Length; i++)
    {
        for (int j = 0; j < result.Length; j++)
        {
            //存储代数余子式的矩阵(行、列数都比原矩阵少1)
            double[][] temp = new double[result.Length - 1][];
            for (int k = 0; k < result.Length - 1; k++)
            {
                temp[k] = new double[result[k].Length - 1];
            }

            //生成代数余子式
            for (int x = 0; x < temp.Length; x++)
            {
                for (int y = 0; y < temp.Length; y++)
                {
                    temp[x][y] = matrix[x < i ? x : x + 1][y < j ? y : y + 1];
                }
            }

            //Console.WriteLine("代数余子式:");
            //PrintMatrix(temp);

            result[j][i] = ((i + j) % 2 == 0 ? 1 : -1) * Determinant(temp);
        }
    }

    //Console.WriteLine("伴随矩阵:");
    //PrintMatrix(result);

    return result;
}

/// <summary>
/// 打印矩阵
/// </summary>
/// <param name="matrix">待打印矩阵</param>
private static void PrintMatrix(double[][] matrix, string title = "")
{
    //1.标题值为空则不显示标题
    if (!String.IsNullOrWhiteSpace(title))
    {
        Console.WriteLine(title);
    }

    //2.打印矩阵
    for (int i = 0; i < matrix.Length; i++)
    {
        for (int j = 0; j < matrix[i].Length; j++)
        {
            Console.Write(matrix[i][j] + "\t");
            //注意不能写为:Console.Write(matrix[i][j] + '\t');
        }
        Console.WriteLine();
    }

    //3.空行
    Console.WriteLine();
}

3.Main函数调用

static void Main(string[] args)
{
    double[][] matrix = new double[][] 
    {
        new double[] { 1, 2, 3 }, 
        new double[] { 2, 2, 1 },
        new double[] { 3, 4, 3 } 
    };

    PrintMatrix(matrix, "原矩阵");
    PrintMatrix(AdjointMatrix(matrix), "伴随矩阵");
    Console.WriteLine("行列式的值为:" + Determinant(matrix) + '\n');
    PrintMatrix(InverseMatrix(matrix), "逆矩阵");

    Console.ReadLine();
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值