自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

okgwf的博客

位于天津,支持天津智能化产业

  • 博客(33)
  • 资源 (2)
  • 收藏
  • 关注

原创 三十六.智能驾驶之基于Structure-aware超快速车道线检测及ROS系统实践

智能驾驶之基于Structure-aware超快速车道线检测及ROS系统实践

2022-02-16 21:52:26 2271 5

原创 三十五.智能驾驶之基于PolarNet的点云语义分割及ROS系统实践

智能驾驶之基于PolarNet的点云语义分割及ROS系统实践

2022-02-16 00:00:47 1818 6

原创 三十四.智能驾驶之多传感器融合技术: F-PointNet融合方法

智能驾驶之多传感器融合技术: F-PointNet融合方法

2022-02-13 22:56:04 2208 1

原创 三十三.智能驾驶之多传感器融合技术: AVOD融合方法

智能驾驶之多传感器融合技术: AVOD融合方法

2022-02-13 22:54:38 1913

原创 三十二.智能驾驶之多传感器融合技术: MV3D融合方法

智能驾驶之多传感器融合技术: MV3D融合方法

2022-02-13 22:53:20 2705 2

原创 三十. 智能驾驶之基于PointPillars的点云目标检测

智能驾驶之基于PointPillars的点云目标检测

2022-02-13 22:50:14 2234 3

原创 二十九. 查漏补缺之U-Net语义分割网络

查漏补缺之U-Net语义分割网络

2022-02-13 22:16:28 920

原创 二十八. 智能驾驶笔记之基于PointNet++的三维点云分类和语义分割

智能驾驶笔记之基于PointNet++的三维点云分类和语义分割

2022-02-13 22:09:15 2402

原创 二十七. 智能驾驶笔记之基于SCNN网络的车道线检测

智能驾驶笔记之基于SCNN网络的车道线检测学习

2022-02-09 22:27:38 2551 2

原创 二十六. 智能驾驶之基于LaneNet + H-Net的车道线检测在ROS系统实践

智能驾驶之基于LaneNet + H-Net的车道线检测在ROS系统实践

2022-02-09 22:26:05 2671 1

原创 二十五. 智能驾驶之基于点云分割和聚类的障碍物检测

智能驾驶之基于点云分割和聚类的障碍物检测

2022-01-22 23:28:11 3047 14

原创 二十三. 基于Soft NMS方法对物体检测网络YOLO v5进行性能改进

基于Soft NMS方法对物体检测网络YOLO v5进行性能改进

2022-01-13 22:38:14 6401 51

原创 二十二. 智能驾驶之使用无损滤波器(UKF)跟踪感知系统感知的障碍物

智能驾驶之使用无损滤波器(UKF)跟踪障碍物

2022-01-13 22:36:02 978

原创 二十一. 智能驾驶之基于视觉识别和点云聚类的障碍物检测

智能驾驶之基于视觉识别和点云聚类的障碍物检测

2022-01-11 22:35:33 4280 3

原创 二十. 在ROS系统上实现基于PyTorch YOLO v5的实时物体检测

在ROS系统上实现基于PyTorch YOLO v5的实时物体检测

2022-01-11 22:29:22 13110 31

原创 十九.在ROS系统基于点云和视觉图像数据融合构建3D点云场景

在ROS系统基于点云和视觉图像数据融合构建3D点云场景

2022-01-03 17:17:56 6263 9

原创 十八.在JetsonNano上为基于PyTorch的物体检测网络测速和选型

为Jetson Nano 上的ROS系统配置基于PyTorch的物体检测

2022-01-03 17:12:01 2538 2

原创 十六. 基于粒子滤波器和直方图的目标物体跟踪

粒子滤波器和蒙特卡洛模拟.未完待续...

2021-10-31 18:59:38 2737 1

原创 十五. 单线激光雷达和视觉信息融合

单线激光雷达和摄像头视觉信息融合案例

2021-10-31 18:51:16 8191 27

原创 十四. 四轮车驱动开发之五: 由浅至深理解6轴陀螺仪姿态解算算法<下>

未完待续...

2021-10-18 21:34:49 5221 3

原创 十三. 四轮车驱动开发之五: 由浅至深理解6轴陀螺仪姿态解算算法<中>

未完待续...

2021-09-24 21:09:52 5439

原创 十二.四轮车驱动开发之五: 由浅至深理解6轴陀螺仪姿态解算算法<上>

未完待续...

2021-09-24 21:09:11 10489 14

原创 十一.四轮车驱动开发之四:理解直流电机PID控制器

未完待续...

2021-09-24 21:08:14 2599

原创 九.四轮车驱动开发之二: 配置PWM驱动直流电机

未完待续...

2021-09-24 21:07:29 4373

原创 十.四轮车驱动开发之三: 巧用编码器获取电机转速信息

未完待续

2021-09-24 21:06:16 4010

原创 八.四轮车驱动开发之一:正/逆向运动学分析

未完待续...

2021-09-24 21:04:26 8062

原创 七.卡尔曼滤波器开发实践之七: 无损卡尔曼滤波器(UKF)进阶-实例篇

未完待续...

2021-09-11 10:48:28 1940

原创 六.卡尔曼滤波器开发实践之六: 无损卡尔曼滤波器(UKF)进阶-白话讲解篇

未完待续...

2021-09-11 10:47:09 4567

原创 五.卡尔曼滤波器(EKF)开发实践之五: 编写自己的EKF替换robot_pose_ekf中EKF滤波器

本系列文章主要介绍如何在工程实践中使用卡尔曼滤波器,分五个小节介绍:一.卡尔曼滤波器开发实践之一: 五大公式二.卡尔曼滤波器开发实践之二: 一个简单的位置估计卡尔曼滤波器 三.卡尔曼滤波器(EKF)开发实践之三: 基于三个传感器的海拔高度数据融合 四.卡尔曼滤波器(EKF)开发实践之四: ROS系统位姿估计包robot_pose_ekf详解五.卡尔曼滤波器(EKF)开发实践之五: 编写自己的EKF替换robot_pose_ekf中EKF滤波器 也就是本文...

2021-09-05 15:30:19 3579 6

原创 四.卡尔曼滤波器(EKF)开发实践之四: ROS系统位姿估计包robot_pose_ekf详解

本系列文章主要介绍如何在工程实践中使用卡尔曼滤波器,分五个小节介绍:一.卡尔曼滤波器开发实践之一: 五大公式二.卡尔曼滤波器开发实践之二: 一个简单的位置估计卡尔曼滤波器 三.卡尔曼滤波器(EKF)开发实践之三: 基于三个传感器的海拔高度数据融合四.卡尔曼滤波器(EKF)开发实践之四: ROS系统位姿估计包robot_pose_ekf详解 也就是本文五.卡尔曼滤波器(EKF)开发实践之五: 编写自己的EKF替换robot_pose_ekf中EKF滤波器----...

2021-09-01 20:51:55 10784 17

原创 三.卡尔曼滤波器(EKF)开发实践之三: 基于三个传感器的海拔高度数据融合

本系列文章主要介绍如何在工程实践中使用卡尔曼滤波器,分五个小节介绍:一.卡尔曼滤波器开发实践之一: 五大公式二.卡尔曼滤波器开发实践之二: 一个简单的位置估计卡尔曼滤波器三.卡尔曼滤波器(EKF)开发实践之三: 基于三个传感器的海拔高度数据融合 也就是本文四.卡尔曼滤波器(EKF)开发实践之四: ROS系统位姿估计包robot_pose_ekf详解五.卡尔曼滤波器(EKF)开发实践之五: 编写自己的EKF替换robot_pose_ekf中EKF滤波器----------...

2021-08-30 21:28:29 5841 19

原创 二.卡尔曼滤波器开发实践之二: 一个简单的位置估计卡尔曼滤波器

本系列文章主要介绍如何在工程实践中使用卡尔曼滤波器,分五个小节介绍:一.卡尔曼滤波器开发实践之一: 五大方程二.卡尔曼滤波器开发实践之二: 一个简单的位置估计卡尔曼滤波器 也就是本文三.卡尔曼滤波器(EKF)开发实践之三: 基于三个传感器的海拔高度数据融合四.卡尔曼滤波器(EKF)开发实践之四: ROS系统位姿估计包robot_pose_ekf详解五.卡尔曼滤波器(EKF)开发实践之五: 编写自己的EKF替换robot_pose_ekf中EKF滤波器---------...

2021-08-28 22:45:02 3391 1

原创 一. 卡尔曼滤波器开发实践之一: 五大公式详解

既然标题名称是开发实践,本系列文章将主要介绍如何在工程实践中使用卡尔曼滤波器,至于凯尔曼滤波器的五大方程如何推导而来,网上有很多大拿们写的都很精彩,这里不再叙述.我当时学习参考了下面两篇博文:1.卡尔曼滤波器推导与解析 - 案例与图片2. 扩展卡尔曼滤波新手教程3. 代码原型参考:The Extended Kalman Filter: An Interactive Tutorial for Non-Experts作者放在github上TinyEKF这个系列计划分五个小节介绍...

2021-08-26 23:36:11 12040 13

单线激光雷达和视觉信息融合 ROS实践功能包

此代码资源是我的博文:十五. 单线激光雷达和视觉信息融合,配套的ROS实践功能包. 使用前请确认并修改: 1. 你的单线雷达和相机发布的topic消息; 2.single_ladar_and_camera_fusion.launch为此功能包启动launch; 3.start_lidar_camera.launch为启动我机器上单线激光雷达和相机的launch. 使用时请按你的实际环境进行配置,或者干脆放弃此文件, 用你自己熟悉的方式启动你机器的相机和Lidar节点; 4.start_lidar_camera.launch文件中我还发布了相机和激光雷达的位姿信息(联合标定信息)到ROS的TF. 代码中会用到此数据进行相机到激光雷达的三维坐标系变换. 使用时请确认你的环境也有这样的TF;

2022-03-08

基于YOLO v5的物体检测ROS功能包实践.

基于YOLOV5的物体检测ROS功能包. 测试环境: Ubuntu 18.04/ROS Melodic/Nvidia Jetson Nano上, PyTorch 1.10.1, cudatoolkit=10.2. 此外,ROS Melodic默认python2.7的cv_bridge, 但Pytorch使用Python3 所以还需要为ROS 安装基于Python3的cv_bridge,详细见我的博文: 二十. 在ROS系统上实现基于PyTorch YOLO v5的实时物体检测

2022-03-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除