深入浅出Numpy-蔡军生-专题视频课程

深入浅出Numpy—1761人已学习
课程介绍    
201709270838483310.png
    随着人工智能的复兴,越来越多AI的架构采用Python语言来开发,因此学会Numpy处理数据,就成为当下急需的技能。人工智能其实就是数据处理方式,因此需要学习怎么样表示数据、以及数据处理方式,Numpy库就是人工智能里的基础,比如在TensorFlow应用非常广泛。
课程收益
    通过本课程学会Numpy库的使用;学会Numpy表示数据、处理数据的过程,以便理解TensorFlow人工智能处理的程序等。
讲师介绍
    蔡军生更多讲师课程
    从事C++开发已经15年以上,软件开发管理10年以上。
课程大纲
    1.1.安装Numpy开发环境  16:01
    2.2.Numpy的Shell交互编程  10:04
    3.3.创建数组  22:22
    4.4.显示数组  25:14
    5.5.数组的基本操作  18:25
    6.6. 通用函数  5:01
    7.7. 数组的索引、切片和迭代  15:21
    8.8. 形状(shape)操作  11:58
    9.9. 拷贝和查看数组  8:10
    10.10. 广播机制  14:19
    11.11. 通过索引数组访问  21:12
    12.12. 使用ix_()函数  6:01
    13.13. 线性代数的基本操作  6:10
    14.14. 用savetxt来保存数据  5:21
    15.15. 用loadtxt来加载数据  6:01
    16.16. 成交量加权平均价格(VWAP)  9:10
    17.17. 时间加权平均价格(TWAP)  6:16
    18.18. 算术平均值函数  5:11
    19.19. 找到最大值和最小值  5:48
    20.20. 计算中位数  4:07
    21.21. 计算方差  9:21
    22.22. 计算简单收益率  6:22
    23.23. 计算标准差  5:51
    24.24. 计算对数收益率  7:10
    25.25. 计算历史波动率  5:55
    26.26. 把股票日期转换为星期  6:18
    27.27. 按周来分析数据  11:11
    28.28. 找到星期一  8:26
    29.29. 使用apply_along_axis函数  8:23
    30.30. 真实波动幅度均值(ATR)  7:57
    31.31. 简单移动平均线(SMA)  11:49
    32.32. 指数移动平均线(EMA)  5:57
    33.33. 计算布林带(Bollinger Band)  8:25
    34.34. 用线性模型预测价格  11:05
    35.35. 用趋势线预测价格走向  10:36
    36.36. 使用ndarray方法  7:12
    37.37. 计算协方差矩阵  11:06
    38.38. 使用协方差矩阵来对比曲线  4:39
    39.39. 最小二乘法多项式拟合曲线  10:53
    40.40. 计算净额成交量  7:38
    41.41. 使用vectorize来代替map  6:34
    42.42. 使用 hanning 函数平滑数据  5:30
    43.43. 使用 mat函数创建矩阵  5:59
    44.44. 使用bmat函数创建复合矩阵  3:13
    45.45. 使用frompyfunc函数来转换  4:48
    46.46. 使用ufunc.reduce函数  5:32
    47.47. 使用ufunc.accumulate函数  5:11
    48.48. 使用ufunc.reduceat函数  9:23
    49.49. 使用ufunc.outer函数  5:04
    50.50. 数组的除法运算  3:32
    51.51. 数组的模运算  3:45
    52.52. 计算斐波那契数列  8:09
    53.53. 计算李萨如曲线  6:01
    54.54. 用傅里叶级数来表示方波  6:25
    55.55. 使用numpy.linalg模块  6:17
    56.56. 奇异值分解(SVD)  8:22
    57.57. 矩阵的广义逆矩阵  4:37
    58.58. 计算行列式  2:50
    59.59. 快速傅立叶变换(FFT)  6:42
    60.60. 二项分布  6:25
    61.61. 超几何分布  5:58
    62.62. 正态分布  5:51
    63.63. 对数正态分布  5:28
    64.64. 使用numpy.lexsort来排序  7:42
    65.65. 复数排序  3:45
    66.66. argmax函数和nanargmax函数  3:21
    67.67. 二分法搜索searchsorted函数  5:00
    68.68. 从数组中抽取元素extract函数  2:41
    69.69. 计算复利终值  4:36
    70.70. 计算复利现值  3:59
    71.71. 计算净现值  5:45
    72.72. 计算内部收益率  4:11
    73.73. 计算分期付款  4:16
    74.74. 计算分期付款的期数  3:53
    75.75. 计算分期付款某一期还款和利息  3:52
    76.76. 寻找质因数  7:13
    77.77. 寻找回文数  4:21
    78.78. 练习(1)  3:57
    79.79. 练习(2)  4:29
    80.80. 练习(3)  3:13
    81.81. 练习(4)  6:00
    82.82. 练习(5)  5:06
    83.83. 练习(6)  6:55
    84.84. 练习(7)  5:04
    85.85. 练习(8)  5:30
    86.86. 练习(9)  6:10
    87.87. 练习(10)  4:59
    88.88. 练习(11)  5:46
    89.89. 练习(12)  6:43
    90.90. 练习(13)  8:02
    91.91. 练习(14)  11:58
    92.92. 练习(15)  5:50
    93.93. 练习(16)  5:28
    94.94. 练习(17)  5:20
    95.95. 练习(18)  7:54
    96.96. 练习(19)  4:33
    97.97. 练习(20)  4:25
    98.98. 练习(21)  7:02
    99.99. 练习(22)  8:42
    100.100. 练习(23)  9:22
大家可以点击【查看详情】查看我的课程
发布了2055 篇原创文章 · 获赞 572 · 访问量 766万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览