数的几何-网格求积分法初阶

本文介绍了数论方法在高维数值积分中的应用,特别是科罗博夫-劳卡方法和分圆域方法。这些方法通过选择特定点集来近似积分,并具有与维数无关的误差主阶,适用于高维度问题的计算。科罗博夫-劳卡方法的点集构造存在挑战,而分圆域方法虽然计算量较小但误差稍大。已有相关表提供参考数据。
摘要由CSDN通过智能技术生成

    高维数值积分数论方法研究开始于20世纪50年代末,其理论基础是数论中的一致分布论。命Us表示 s维单位立方体。假定Us上定义的函数,并假定存在且其绝对值以C为界。命题Us中具有偏差D(n)的点集。所谓数论方法就是用被积函数在p(k) (1kn)上值的算术平均值

                             

作为Us上定积分

                               

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值