数据库技术
文章平均质量分 77
caiyd08
广东培正学院大学本科计算机科学与工程系 计算机科学与技术专业 辅修法律系
ZhaoQing University Mathematics and scientific School
北京工业大学数学力学学院研修班
2006年 出席ZhaoQing University数学学术交流讲座;
2006年 参与华南师范大学数学与科学学院学术讲座;
.....
展开
-
莱布尼茨数学思想的统一性
[摘要]戈特弗里德·威廉·莱布尼茨(1646~1716)对数学有两项突出贡献:发明了符号逻辑和微积分。由于这两项成就分属不同的数学分支,人们也往往将其看作莱布尼茨的两种不同工作,忽视了它们之间的一致性,这为研究莱布尼茨的数学思想、完整地理解数学史和科学发现的规律带来不少困难。本文的目的就是试图理解的揭示这种一致性。 [关键字]符号逻辑,规律性,数学思想. 一、符号逻辑: “通用数学原创 2009-12-18 09:56:00 · 11134 阅读 · 0 评论 -
Euler 乘积公式
怎么会想起要翻译 Euler 乘积公式的证明呢? 因为打算在不远的将来写写 Riemann 猜想, 这是上个世纪的数学家们没能啃下来的命题中最著名的一个。 Euler 乘积公式是 Riemann 研究素数分布的起点之一, 也是他提出 Riemann 猜想的著名论文中的第一个公式。 Euler 乘积公式: 对任意复数翻译 2010-01-09 18:18:00 · 2605 阅读 · 0 评论 -
Hilbert 第十问题漫谈
1. 问题 数学问题是数学中最具魅力的部分之一, 并且也是数学史上许多重要思想的源泉。 据说有人曾建议德国著名的数学家希尔伯特 (David Hilbert, 1862-1943) 去解决费尔马猜想, 以夺取为这一猜想而设的沃尔夫斯凯尔奖金 (Wolfskehl Prize), 希尔伯特却笑笑回答说: “我为什么要杀掉一只会下金蛋的鹅呢?” 在希尔伯特看来, 一个象费尔马猜想这翻译 2010-01-09 18:05:00 · 2476 阅读 · 0 评论 -
希腊几何学的社会文化根源
【内容提要】本文从古希腊独特的社会文化形态作为切入点,探索求解了数学思想史上著名的“克莱因问题”,从而破解了希腊证明几何学的成因之谜。古希腊社会在从氏族社会向民族社会转轨变形的过程中,爆发了一场绵延数世纪的思想启蒙运动。希腊人从宗教神学中解放了出来,开始了对世界的理性思考,他们为了解决社会秩序的重组问题,提出了以法治国的政治主张。从此希腊社会走上了法制的轨道。在古典的民主政治和商品经济形成的同时,原创 2010-01-08 19:50:00 · 1815 阅读 · 0 评论 -
探究三角形的等积分割线
如何将一个三角形面积分割成两个相等的部分,是我们已熟知的问题,只要沿三角形的中线,即可把三角形分割成面积相等的两个部分,许多人会认为,这样的分割线只有三条,但是,这样的分割线到底有多少条呢? 问题1:请用一条直线,把△ABC分割为面积相等的两部分。 解:取BC的中点,记为点D,连结AD,则AD所在直线把△ABC分成面积相等的两个部分。 大家知道原创 2009-12-29 16:19:00 · 1388 阅读 · 0 评论 -
数的几何-网格求积分法初阶
高维数值积分数论方法研究开始于20世纪50年代末,其理论基础是数论中的一致分布论。命Us表示 s维单位立方体。假定是Us上定义的函数,并假定存在且其绝对值以C为界。命题是Us中具有偏差D(n)的点集。所谓数论方法就是用被积函数在p(k) (1≤k≤n)上值的算术平均值 作为Us上定积分原创 2009-12-29 14:58:00 · 1019 阅读 · 0 评论 -
哥德巴赫猜想的解析
哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。翻译 2009-12-25 09:30:00 · 1665 阅读 · 0 评论 -
数论问题的解法举例(2)
三、归纳法 当我们要解决一个问题的时候,可以先分析这个问题的几种简单的、特殊的情况,从中发现并归纳出一般规律或作出某种猜想,从而找到解决问题的途径。这种从特殊到一般的思维方法称为归纳法。 例10 将100以内的质数从小到大排成一个数字串,依次完成以下5项工作叫做一次操作: (1)将左边第一个数码移到数字串的最右边; (2)从左到右两位一节组成若干个两位数; (3)划原创 2009-12-25 10:25:00 · 2882 阅读 · 0 评论 -
数论问题的解法举例(1)
数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题原创 2009-12-25 09:39:00 · 1869 阅读 · 0 评论 -
有关数论的两道题的解法
1.p是大于5的素数,求证240∣p^4-1。2.a b c∈Z 且a+b+c=0 设d=a^1999+b^1999+c^1999 , 求证:∣d∣不是素数。解答: 1. 第一题 证明:p^4-1=(p^2+1)(p-1)(p+1) 240=2^4*3*5=4*2*2*3*5 所以若证明240|p^4-1 只需证明(p^2+1)(p-1)(p+1)含有4 2原创 2009-12-25 11:23:00 · 1047 阅读 · 0 评论 -
对高斯消元法的改进以及在工程上的应用
[摘要]传统的高斯消元法只能处理多元一次方程组满秩的情况,本文应用人工智能中非单调逻辑和超协调逻辑的思想,通过对高斯消元法的改进,使其对所有的多元一次方程组都能进行有效的处理,从而扩展了在工程上的应用范围。 [关键字]高斯消元法、非单调逻辑、超协调逻辑、约束 0 引言 传统的高斯消元法只能处理多元一次方程组满秩的情况,从而限制了它的应用范围。而近年来人工智能的原创 2009-12-22 08:50:00 · 1927 阅读 · 0 评论 -
[转]ON INCOMPATIBILITY OF GRAVITATIONAL RADIATION WITH THE 1915 EINSTEIN EQUATION
Applied and Pure Research Institute17 Newcastle Drive, Nashua, NH 03060Physics Essays, vol. 13, no. 4, 2000AbstractIt is shown that the 1915 Einstein equation is incompatible with the physical notion转载 2009-12-22 10:35:00 · 1725 阅读 · 0 评论 -
量子算法与量子计算实验
[摘要]本文介绍了量子计算纠缠和量子比特的基本概念,系统阐述了几种主要的量子算法:Shor算法—大数质因子分解的量子算法;Grover搜索—无序数据库的搜索;Hogg搜索—高度结构化搜索。在对量子计算基本理论和量子算法有一定认识的基础上,进一步介绍了在量子计算实验方面起重要作用的二种体系:核磁共振、腔与原子体系。 [关键词]量子算法、量子计算、量子比特、纠缠Abstract:In th原创 2009-12-22 10:25:00 · 10364 阅读 · 1 评论 -
分形理论与波动理论研究
前言 在多年大量实践与探索的基础上,已经形成一个比较合乎现实逻辑的理论体系。该论文结合当今数学与物理学界最热门的研究领域之一---以变化多姿杂乱无章的自然现象为研究对象的分形理论,从最基本的概念与逻辑出发阐明了波动是基本的自然法则,价格走势的波浪形态实属必然;阐明了黄金分割率的数学基础及价值基础,价格波动的分形、基本形态及价量关系,并总结了应用分析的方法与要点等等;文中也多次引用我个原创 2009-12-18 11:22:00 · 3311 阅读 · 0 评论 -
分形
普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。 “谁不知道熵概念就不能被认为是科学上的文化人,将来谁不知道分形概念,也不能称为有知识。”——物理学家 惠勒原创 2009-12-18 10:49:00 · 795 阅读 · 0 评论 -
超越数的概述
一、概述 1定义:超越数是不能满足任何整系数代数方程的实数。 2注意:该部分涉及高等数学知识。 此定义恰与代数数相反。 两个著名的例子:圆周率π=3.14159…|自然对数的底e=2.71828… 可以证明超越数有无穷多个。在实数中除了代数数外,其余的都是超越数。实数可以作如下分类: 实数 / / 代数数 超越数 所原创 2009-12-18 10:35:00 · 4793 阅读 · 0 评论 -
等价无穷小的理论拓展
【摘要】等价无穷小具有很好的性质,灵活运用这些性质,无论是在在求极限的运算中,还是在正项级数的敛散性判断中,都可取到预想不到的效果,能达到罗比塔法则所不能取代的作用。通过举例,对比了不同情况下等价无穷小的应用以及在应用过程中应注意的一些性质条件,不仅使这些原本复杂的问题简单化,而且可避免出现错误地应用等价无穷小。 【关键词】等价无穷小,极限,罗比塔法则,正项级数,比较审敛法.原创 2009-12-18 10:20:00 · 8362 阅读 · 0 评论 -
Bertrand 假设
若干天前, 一位读者来信询问数论中的 Bertrand 假设是否有简单证明, 由此使我萌生了撰写一个新系列的想法, 分篇介绍数学中一些著名命题的证明。 本文就是该系列的第一篇。 既然一切皆由 Bertrand 假设所起, 那就以这一假设的证明作为开篇吧。 Bertrand 假设 (Bertrands Postulate): 对任意自然数 n ≥ 2, 至少存在一原创 2010-01-09 18:20:00 · 2229 阅读 · 0 评论