误差修正模型

思想与步骤

考虑这样一个场景:
我们要对两个时间序列 x t x_t xt y t y_t yt构建模型,如果 x t x_t xt y t y_t yt平稳,那我们可以构建这么一个简单模型 y t = β 0 + β 1 x t + ϵ t y_t=\beta_0+\beta_1x_t+\epsilon_t yt=β0+β1xt+ϵt,然后用最小二乘去估计参数。

但是,如果 x t x_t xt y t y_t yt不平稳,但其一阶差分平稳,我们可能会考虑这样一个模型: Δ y t = β 0 ′ + β 1 ′ Δ x t + u t \Delta y_t=\beta_0'+\beta_1'\Delta x_t+u_t Δyt=β0+β1Δxt+ut,其中, u t = ϵ t − ϵ t − 1 u_t=\epsilon_t-\epsilon_{t-1} ut=ϵtϵt1

可以发现一个问题,对于残差项,我们一般假设其序列不相关,但对于 u t = ϵ t − ϵ t − 1 u_t=\epsilon_t-\epsilon_{t-1} ut=ϵtϵt1 u t − 1 = ϵ t − 1 − ϵ t − 2 u_{t-1}=\epsilon_{t-1}-\epsilon_{t-2} ut1=ϵt1ϵt2,显然序列相关,违反回归模型的假定。另一方面,这样构造的模型只考虑短期变化的关系,并不能反映 x t x_t xt y t y_t yt的长期关系。

有什么方法可以让我们的模型中的变量是平稳的,同时考虑到长期关系以及残差项无序列相关。这便有了误差修正模型(ECM)的概念,以及Engle和Granger两步法来估计模型:

Step1

首先,我们要确定 y t y_t yt x t x_t xt是否存在协整关系,或者说是否存在长期均衡关系,即存在一个 x t x_t xt y t y_t yt的线性组合是平稳的。

那么可以对 y t = β 0 + β 1 x t + u t y_t=\beta_0+\beta_1x_t+u_t yt=β0+β1xt+ut用最小二乘估计其参数,然后对 u ^ t \hat{u}_t u^t进行平稳性检验,如果 u ^ t \hat{u}_t u^t平稳(即 y t − β ^ 0 − β ^ 1 x t y_t-\hat{\beta}_0-\hat{\beta}_1x_t ytβ^0β^1xt平稳),则说明存在协整关系。

Step2

u ^ t \hat{u}_t u^t平稳,我们先假设对于自回归分布滞后模型ADL(1,1):
y t = β 0 ′ + β 1 ′ x t + β 2 ′ x t − 1 + γ y t − 1 + ϵ t y_t=\beta_0'+\beta_1'x_{t}+\beta_2'x_{t-1}+\gamma y_{t-1}+\epsilon_t yt=β0+β1xt+β2xt1+γyt1+ϵt
将上式进行变换,可得:
y t − y t − 1 = β 0 ′ + β 1 ′ ( x t − x t − 1 ) + β 1 ′ x t − 1 + β 2 ′ x t − 1 + ( γ − 1 ) y t − 1 + ϵ t Δ y t = β 0 ′ + β 1 ′ Δ x t + ( γ − 1 ) ( y t − 1 − β 0 ′ 1 − γ − β 1 ′ + β 2 ′ 1 − γ x t − 1 ) + ϵ t Δ y t = β 0 ′ + β 1 ′ Δ x t + ( γ − 1 ) u ^ t − 1 + ϵ t \begin{align*} y_t-y_{t-1}&=\beta_0'+\beta_1'(x_t-x_{t-1})+\beta_1'x_{t-1}+\beta_2'x_{t-1}+(\gamma-1)y_{t-1}+\epsilon_t \\ \Delta y_t&=\beta_0'+\beta_1'\Delta x_t+(\gamma-1)(y_{t-1}-\dfrac{\beta_0'}{1-\gamma}-\dfrac{\beta_1'+\beta_2'}{1-\gamma}x_{t-1})+\epsilon_t \\ \Delta y_t&=\beta_0'+\beta_1'\Delta x_t+(\gamma-1)\hat{u}_{t-1}+\epsilon_t \end{align*} ytyt1ΔytΔyt=β0+β1(xtxt1)+β1xt1+β2xt1+(γ1)yt1+ϵt=β0+β1Δxt+(γ1)(yt11γβ01γβ1+β2xt1)+ϵt=β0+β1Δxt+(γ1)u^t1+ϵt

为何 y t − 1 − β 0 ′ 1 − γ − β 1 ′ + β 2 ′ 1 − γ x t − 1 = u ^ t − 1 y_{t-1}-\dfrac{\beta_0'}{1-\gamma}-\dfrac{\beta_1'+\beta_2'}{1-\gamma}x_{t-1}=\hat{u}_{t-1} yt11γβ01γβ1+β2xt1=u^t1

对于 y t = β 0 ′ + β 1 ′ x t + β 2 ′ x t − 1 + γ y t − 1 + ϵ t y_t=\beta_0'+\beta_1'x_{t}+\beta_2'x_{t-1}+\gamma y_{t-1}+\epsilon_t yt=β0+β1xt+β2xt1+γyt1+ϵt,我们令 y ∗ = y t ( f o r    a l l    t ) y^*=y_t(for \;all\;t) y=yt(forallt) ϵ t = 0 \epsilon_t=0 ϵt=0,那么就有
y ∗ = β 0 ′ 1 − γ + β 1 ′ + β 2 ′ 1 − γ x ∗ y^*=\dfrac{\beta_0'}{1-\gamma}+\dfrac{\beta_1'+\beta_2'}{1-\gamma}x^* y=1γβ0+1γβ1+β2x即对应着 y t y_t yt x t x_t xt的长期均衡关系

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

quantao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值