多元线性回归的参数估计——最小二乘

模型

y i = β 0 + β 1 x 1 i + … + β k x k i + ϵ i y_i=\beta_0+\beta_1x_{1i}+\ldots+\beta_kx_{ki}+\epsilon_i yi=β0+β1x1i++βkxki+ϵi

从样本的角度推导

假设样本数据集为 { y 1 , … , y n } \{y_1,\ldots,y_n\} {y1,,yn},令 β = ( β 0 , β 1 , … , β k ) ′ \beta=(\beta_0,\beta_1,\ldots,\beta_k)^\prime β=(β0,β1,,βk) y = ( y 1 , … , y n ) ′ y=(y_1,\ldots,y_n)^\prime y=(y1,,yn) x i = ( 1 , x 1 i , … , x k i ) ′ x_i=(1,x_{1i},\ldots,x_{ki})^\prime xi=(1,x1i,,xki) x = ( x 1 , … , x n ) x=(x_1,\ldots,x_n) x=(x1,,xn),那么:
β ^ = a r g m i n β ∑ i = 1 n 1 2 ( y i − x i ′ β ) 2 = a r g m i n β 1 2 ∣ ∣ y − x ′ β ∣ ∣ 2 = a r g m i n β 1 2 ( y − x ′ β ) ′ ( y − x ′ β ) = a r g m i n β 1 2 ( y ′ y − y ′ x ′ β − β ′ x y + β ′ x x ′ β ) \begin{align*} \hat{\beta}&=\mathop{argmin}\limits_{\beta}\sum\limits_{i=1}^n\dfrac{1}{2}(y_i-x_i^\prime\beta)^2 \\ &=\mathop{argmin}\limits_{\beta}\dfrac{1}{2}||y-x^\prime\beta||^2 \\ &=\mathop{argmin}\limits_{\beta}\dfrac{1}{2}(y-x^\prime\beta)^\prime(y-x^\prime\beta) \\ &=\mathop{argmin}\limits_{\beta}\dfrac{1}{2}(y^\prime y-y^\prime x^\prime\beta-\beta^\prime xy+\beta^\prime xx^\prime\beta) \end{align*} β^=βargmini=1n21(yixiβ)2=βargmin21∣∣yxβ2=βargmin21(yxβ)(yxβ)=βargmin21(yyyxββxy+βxxβ)

1 2 ( y ′ y − y ′ x ′ β − β ′ x y + β ′ x x ′ β ) \dfrac{1}{2}(y^\prime y-y^\prime x^\prime\beta-\beta^\prime xy+\beta^\prime xx^\prime\beta) 21(yyyxββxy+βxxβ)关于 β \beta β求偏导,有:
∂ ∂ β 1 2 ( y ′ y − y ′ x ′ β − β ′ x y + β ′ x x ′ β ) = 1 2 ( − x y − x y + x x ′ β + x x ′ β ) = x x ′ β − x y = 0 \begin{align*} \dfrac{\partial}{\partial\beta}\dfrac{1}{2}(y^\prime y-y^\prime x^\prime\beta-\beta^\prime xy+\beta^\prime xx^\prime\beta) &=\dfrac{1}{2}(-xy-xy+xx^\prime\beta+xx^\prime\beta) \\ &=xx^\prime\beta-xy=0 \end{align*} β21(yyyxββxy+βxxβ)=21(xyxy+xxβ+xxβ)=xxβxy=0

故可得 β ^ = ( x x ′ ) − 1 x y \hat{\beta}=(xx^\prime)^{-1}xy β^=(xx)1xy

从理论的角度推导

β ^ = a r g m i n β M S E = a r g m i n β E ( y i − x i ′ β ) 2 \begin{align*} \hat{\beta}&=\mathop{argmin}\limits_{\beta}MSE \\ &=\mathop{argmin}\limits_{\beta}E(y_i-x_i^\prime\beta)^2 \end{align*} β^=βargminMSE=βargminE(yixiβ)2

E ( y i − x i ′ β ) 2 E(y_i-x_i^\prime\beta)^2 E(yixiβ)2关于 β \beta β求偏导,则有:
∂ ∂ β E ( y i − x i ′ β ) 2 = 2 E ( y i − x i ′ β ) ( − x i ) = 2 E x i x i ′ β − 2 E x i y i = 0 \begin{align*} \dfrac{\partial}{\partial\beta}E(y_i-x_i^\prime\beta)^2 &=2E(y_i-x_i^\prime\beta)(-x_i) \\ &=2Ex_ix_i^\prime\beta-2Ex_iy_i =0 \end{align*} βE(yixiβ)2=2E(yixiβ)(xi)=2Exixiβ2Exiyi=0

故有: β ^ = ( E x i x i ′ ) E x i y i \hat{\beta}=(Ex_ix_i^\prime)Ex_iy_i β^=(Exixi)Exiyi

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

quantao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值