3.无监督学习介绍(Unsupervised learning)

本文探讨了无监督学习与监督学习的本质区别。监督学习依赖于带标签的数据集,用于预测或分类任务;无监督学习则从无标签数据中发现内在结构,如通过聚类算法将相似数据归为一组,或在鸡尾酒会问题中分离不同来源的声音信号。
摘要由CSDN通过智能技术生成

无监督学习与监督学习的不同

  • 对于监督学习,提供的数据样本需要告知明确的答案,即对于肿瘤那个例子来说,我们会知道哪个是良性的,还是恶性的
  • 对于无监督学习,数据没有任何标签,拿到数据集,我们并不知道要拿它来做什么,也不知道每个数据点究竟是什么,而只是被告知这里有一个数据集,能否在其中找到某种有意义的结构

应用场景

  • 聚类算法:把数据分成不同的簇,同一个簇的数据总体上较为相似,例如:浏览器中,把搜集到的关于同一个事件的新闻链接放在同一个大标题下(簇),便于用户浏览
  • 鸡尾酒聚会:一个房间里有两个人在进行鸡尾酒聚会,同时有两个话筒记录两个人的声音,运用无监督学习算法能够分离两个人的声音
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值