关于tensorflow的dataset执行map的问题

这篇博客探讨了在TensorFlow中使用`map`函数处理dataset时遇到的内存泄漏问题。作者通过一个例子展示了当在map内迭代子dataset时,系统可能会卡死。问题可能源于对map操作的底层原理不熟悉。解决方案是改用`flat_map`来展开内部的dataset,以避免内存问题。
摘要由CSDN通过智能技术生成

对一个包含dataset的dataset,比如这种window过后的玩意儿
如果对这种dataset执行map,在map里对子元素的dataset进行遍历,就会出现内存泄漏并且卡死

import tensorflow as tf

def f(x:tf.data.Dataset):
    a=[i for i in x]
    return a

a = tf.data.Dataset.range(9)
b = a.window(3)
c = b.map(f)

print(list(c.as_numpy_iterator()))

目前不清楚原因,可能关于map的底层原理不太懂

如果想要把里面的dataset展开,必须使用flat_map

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CaptainHarryChen

随便

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值