nyoj104 最大和 最大子矩阵模板题

最大和

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 5
描述

给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。 
例子:
0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
其最大子矩阵为:

9 2 
-4 1 
-1 8 
其元素总和为15。 

输入
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
输出矩阵的最大子矩阵的元素之和。
样例输入
1
4 4
0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
样例输出
15

/*
这个就是二维的最大连续和问题。
我们可以通过转化为一维的最大连续和来求解,方法就是用将n行的矩阵压缩为一行(累加求和),这样就转化为了一维的
最大连续和问题。然后我们对从第i行开始的子矩阵进行枚举即可。复杂度为O(N*N)。 
假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
  | a11 …… a1i ……a1j ……a1n |
  | a21 …… a2i ……a2j ……a2n |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ar1 …… ari ……arj ……arn |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ak1 …… aki ……akj ……akn |
  |  .     .     .    .    .     .    .   |
  | an1 …… ani ……anj ……ann |
 那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
 (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
 由此我们可以看出最后所求的就是此一维数组的最大子段和问题,到此我们已经将问题转化为可以解决的问题了。
*/


 
#include<stdio.h>
#include<string.h>
#include<limits.h>
int map[105][105];
int n,m,max;


void fun(int k)
{
	int t=0;
	for(int i=1;i<=m;i++)
	{
		if(t>0) 
		t+=map[k][i];
		else 
		t=map[k][i];
		if(t>max)
		max=t;
	} 
}


int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&m);
		for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		scanf("%d",&map[i][j]); 
    	max=map[1][1];
		
		for(int i=1;i<=n;i++)
		{
			fun(i);
			for(int j=i+1;j<=n;j++)
			{
				for(int k=1;k<=m;k++)
				{
					map[i][k]+=map[j][k];
				}
				fun(i);
			}
		}
		printf("%d\n",max);	
	}
	return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值