最大和
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。
例子:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩阵为:9 2
-4 1
-1 8
其元素总和为15。
-
输入
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
- 输出矩阵的最大子矩阵的元素之和。 样例输入
-
1 4 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
样例输出
-
15
/*
这个就是二维的最大连续和问题。
我们可以通过转化为一维的最大连续和来求解,方法就是用将n行的矩阵压缩为一行(累加求和),这样就转化为了一维的
最大连续和问题。然后我们对从第i行开始的子矩阵进行枚举即可。复杂度为O(N*N)。
假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
| a11 …… a1i ……a1j ……a1n |
| a21 …… a2i ……a2j ……a2n |
| . . . . . . . |
| . . . . . . . |
| ar1 …… ari ……arj ……arn |
| . . . . . . . |
| . . . . . . . |
| ak1 …… aki ……akj ……akn |
| . . . . . . . |
| an1 …… ani ……anj ……ann |
那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
(ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
由此我们可以看出最后所求的就是此一维数组的最大子段和问题,到此我们已经将问题转化为可以解决的问题了。
*/
#include<stdio.h>
#include<string.h>
#include<limits.h>
int map[105][105];
int n,m,max;
void fun(int k)
{
int t=0;
for(int i=1;i<=m;i++)
{
if(t>0)
t+=map[k][i];
else
t=map[k][i];
if(t>max)
max=t;
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&map[i][j]);
max=map[1][1];
for(int i=1;i<=n;i++)
{
fun(i);
for(int j=i+1;j<=n;j++)
{
for(int k=1;k<=m;k++)
{
map[i][k]+=map[j][k];
}
fun(i);
}
}
printf("%d\n",max);
}
return 0;
}