MySQL的简介及发展历

MySQL的简介
MySQL 是一个关系型数据库t管理系统,由瑞典MySQL AB公司开发

  • MySQL是一种开放源代码的关系型数据库管理系统,因为是开放源代码的,在下载后可以根据自己的需要进行修改。
  • 由于体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本需选择了MySQL作为网站数据库。
  • 最开始由SUN公司收购,后面被甲骨文Oracle公司收购
  • SQL ,NoSQL(Not Only SQL),NewSQL(SQL+NoSQL)
  • 目前全世界市场有比例最高的两种数据库: Oracle 、MySQL
  • Oracle互联网之外第一,垄断市场,近一半的使用比例,最好最稳定功能最强的数据库,有钱人用的数据库。
  • MySQL互联网行业第一。

MySQL的发展历
按照时间顺序:

时间发展史
1979年瑞典的Monty Widenius 在为TcX公司打工期间,写了一个报表工具的存储引擎,工具叫Unireg。
1985年瑞典的几个小伙伴一起成立了一个公司,这就是MySQL AB前身,编写了ISAM(Indexed Sequential Access Method)存储引擎核心算法的前身。
1990年由于业务的需要,需要这个存储引擎提供SQL支持,因此整个团队就重写了这个工具。
1996年MySQL1.0发布,在小范围内使用。
1996年10月MySQL 3.11.1发布了,没有2.x版本。最开始,只提供了Solaris下的二进制版本。
1996年11月MySQL 3.x for Linux版本发布
1999-2000年MySQL AB公司在瑞典成立了。开发出了BDB引擎,MySQL从此开始支持事务处理了。
2000年MySQL公布了算自已的源代码,并采用GPL(GNU General Public License)许可协议正式开源。
2000年4月MySQL对旧的存储引擎ISAAM进行了整理,命名为MyISAM。
2001年MySQL集成第三方公司的存储引擎InnoDB,这个引擎同样支持事务处理,还支持行级锁。
2001年MySQL 3.23 版本发布,该版本已经支持大多数的基本的SQL操作,而且还集成了MyISAM和InnoDB存储引擎。开始支持外键(InnoDB)。(MySQL与InnoDB的正式结合版本是4.0)
2004年10月MySQL 4.1版本发布,开始支持R-trees索引(MyISAM)。
2005年10月MySQL 5.0发发布,这是MySQL历史上最有里程碑的一个版本,在5.0版本加入了游标,存储过程,触发器,视图和事务的支持。在5.0之后MySQL表现出迈向高性能数据库的发展步伐。MySQL5.1支持分功能、支持行复制。
2008年1月16日MySQL被SUN公司收购。
2009年4月20日Oracle收购Sun公司,MySQL转入Oracle公司。

2010年4月22日 ,发布MySQL5.5 + MySQL Cluster 7.1 。Oracle对MySQL版本重新进行了划分,分成了社区版、企业版。
从5.5版本开始,里面多了如下功能:
1.默认存储引擎更改为InnoDB
2.多核性能提升
3.复制功能(replication)加强
4.增强表分区功能:非整数列分区、多列分区、可用性增强,更多微调功能。
5.Insert Buffering
6.Support for Native AIO on Linux

2013年2月5日 ,MySQL5.6首个正式版版本号为5.6.10发布。在MySQL5.5中使用的是InnoDB作为默认的存储引擎,而MySQL5.6对InnoDB引擎进行了改造,提供全文索引能为,使InnoDB适合各种应用场景。
主要几大块:
1.InnoDB增强
2.分区增强
3.复制与日志增强,将实现双向复制
4.优化器增强
5.NoSQL支持

2015年10月21日, MySQL5.7首个正式版5.7.9发布。
MySQL5.7和早期版本的区别如:
1.3倍更快的性能
2.InnoDB相关改进
3.新的优化器
4.多源复制
5.GIS 相关改进
6.原生JSON支持

2016年9月12日, MySQL8.0开发版本发布,完全集成InnoDB引擎,废弃MyISAM引擎。

增加了数据字典、账号权限角色表、InnoDB提升、JSON提升、Optimizer优化器、直方图支持、参数持久化、扫描性能等等,逐渐向Oracle的功能靠近。

<think>嗯,用户的问题是关于“lightrag IT technology”,看起来他们可能是在寻找与LightRAG相关的技术信息。不过,用户的具体意图不是很明确,可能需要进一步澄清。不过根据常见的IT技术领域,LightRAG可能是一个轻量级的RAG(检索增强生成)框架,或者是某个特定工具、库的缩写。 首先,需要确认LightRAG的具体定义和应用场景。通过搜索发现,LightRAG通常指的是轻量级的检索增强生成技术,用于优化自然语言处理任务,特别是在处理大规模数据时提高效率。这可能涉及到机器学习模型的优化、减少计算资源消耗等方面。 接下来,可能需要了解LightRAG的核心技术。比如,它可能采用了知识蒸馏技术,将大型模型的知识迁移到更小的模型中,或者使用高效的索引策略来加速检索过程。此外,分布式计算可能也是其关键技术,用于处理海量数据。 然后,应用场景方面,LightRAG可能被应用于智能客服、文档摘要生成或推荐系统等需要快速检索和生成的领域。这些场景通常对响应时间和资源消耗有较高要求,因此轻量化的解决方案很有必要。 用户可能还想知道如何部署或使用LightRAG,所以需要整理相关的技术实现步骤。例如,安装依赖库、准备数据集、初始化模型、配置参数以及启动训练流程等。这部分需要提供具体的代码示例,帮助用户实际操作。 最后,注意事项部分需要提醒用户数据预处理的重要性、硬件资源评估以及模型监控和维护,确保他们在实际应用中能够顺利使用LightRAG并优化性能。 在生成相关问题的时候,需要考虑用户可能的后续疑问,比如与其他框架的比较、性能优化方法、适用场景等,这些都是用户在使用过程中可能会遇到的问题。因此,相关问题需要围绕这些方面展开,确保覆盖用户可能的需求。</think>LightRAG是一种面向检索增强生成(Retrieval-Augmented Generation)的轻量化技术解决方案,主要用于提升自然语言处理任务中知识检索与生成效率。以下为关键技术解析和实现方法: **核心技术组成** 1. **知识蒸馏压缩** 采用层剪枝和量化技术将基础大模型(如BERT、GPT)压缩至原体积的30%-40%,典型公式为: $$L_{kd} = \sum_{x \in X} \| f_T(x) - f_S(x) \|^2$$ 其中$f_T$为教师模型,$f_S$为学生模型 2. **混合索引策略** 结合FAISS向量索引与Elasticsearch文本索引,实现多模态检索加速: ```python from lightrag.index import HybridIndex index = HybridIndex(vector_dim=768, text_field="content") index.add_documents(docs) ``` **部署实施方法** **方法一:本地化部署** 安装核心依赖包: ```bash pip install lightrag-core>=2.1.0 torch>=2.0.1 ``` 初始化轻量化模型: ```python from lightrag import LiteRAG model = LiteRAG( model_name="lightrag-base-zh", cache_dir="./models" ) ``` **方法二:云端集成** 通过REST API接入: ```bash curl -X POST https://api.lightrag.com/generate \ -H "Authorization: Bearer {API_KEY}" \ -d '{"query":"如何优化神经网络训练效率","max_tokens":200}' ``` **性能优化参数** - 检索窗口大小:建议设为128-256 tokens - 批处理阈值:单次处理8-16个请求 - 缓存策略:LRU缓存最近50次查询结果 **典型应用场景** 1. 企业知识库实时问答系统 2. 长文档自动摘要生成 3. 个性化推荐内容生成 **注意事项** - 建议预处理阶段进行数据去重(MinHashLSH) - GPU显存低于8GB时需启用内存交换模式 - 中文场景需加载额外分词词典
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值