GitHub - HKUDS/LightRAG: "LightRAG: Simple and Fast Retrieval-Augmented Generation"
安装
官方给了两种方法:
- 源码安装
- pip安装
# 源码安装
cd LightRAG
pip install -e .
# pip 安装
pip install lightrag-hku
官方推荐源码安装,但我在自己电脑上出现过安装依赖失败的情况,在服务器上没有出现这样的问题,我自己建议pip安装。但源码还需要下载,其中有很多example
├── examples
│ ├── batch_eval.py
│ ├── generate_query.py
│ ├── graph_visual_with_html.py
│ ├── graph_visual_with_neo4j.py
│ ├── lightrag_api_openai_compatible_demo.py
│ ├── lightrag_api_oracle_demo..py
│ ├── lightrag_azure_openai_demo.py
│ ├── lightrag_bedrock_demo.py
│ ├── lightrag_lmdeploy_demo.py
│ ├── lightrag_ollama_demo.py
│ ├── lightrag_openai_compatible_demo.py
│ ├── lightrag_openai_demo.py
│ ├── lightrag_oracle_demo.py
│ ├── lightrag_siliconcloud_demo.py
│ └── vram_management_demo.py
LightRAG提供了很多不同调用大模型的方式,之后再说。
测试文件
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
官方文档中的测试文件是一本小说,名为A Christmas Carol by Charles Dickens。下载时会出现下载失败,注意检查下文件内容,还有文件格式,会出现下载为utf16的文件,后续代码读取会报错,可以
- 改下lightrag中读取文件的代码
- 直接在vscode右下角改下编码格式,改成utf8
使用
官方给了多种大模型调用方法,主要有
- gpt
- ollama
- openai
- huggingface
接下来以GPT为例,讲下它构造图谱的回答问题的流程。
GPT
# 源文件 examples/lightrag_openai_demo.py
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio
# nest_asyncio.apply()
#########
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=gpt_4o_mini_complete # Use gpt_4o_mini_complete LLM model
# llm_model_func=gpt_4o_complete # Optionally, use a stronger model
)
with open("./book.txt") as f:
rag.insert(f.read())
# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
代码封装的很好了
1.首先创建一个文件夹,用于保存文件(log, kv_cache文件,文本块、实体、关系这类的图谱数据)。下表是已经构造后的文件夹,初始为空。
dickens/
├── graph_chunk_entity_relation.graphml
├── kv_store_full_docs.json
├── kv_store_llm_response_cache.json
├── kv_store_text_chunks.json
├── lightrag.log
├── vdb_chunks.json
├── vdb_entities.json
└── vdb_relationships.json
2.之后将文件夹路径,调用LLM的函数,调用embedding的函数作为参数传给LightRAG类,这两个函数都可以改为其他类别。
3.读取文件,rag.insert(f.read())直接把文本转换为图谱,过程会有点长,无需手动保存,文件会自动保存到上面的文件夹路径。
4.问答,它提供了多种维度的问答方式,含义就不说了
- naive
- local
- global
- hybrid
Ollama
# 源文件 examples/lightrag_ollama_demo.py
from lightrag.llm import ollama_model_complete, ollama_embedding
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="gemma2:2b",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
),
),
)
我只展示了和gpt不同的地方,主要是换了LLM和embedding的调用方式,但我在个人电脑上使用ollama很慢,主要在LLM调用方面,半小时完成了不到20个chunk的图谱提取,embedding速度还行。综合来说,不建议在自己电脑不行的情况下用ollama。
Openai
# 源文件 examples/lightrag_openai_compatible_demo.py
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"solar-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("UPSTAGE_API_KEY"),
base_url="https://api.upstage.ai/v1/solar",
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model="solar-embed