1000以内的正整数中的所有素数

     以下内容和代码主要参考了这位兄台这位兄台的。
     素数又称为质数,它是在大于1的自然数中只能被1和其自己整除的数。
     那么判断素数最简单的方法是看其是否只能被1和其自己整除的数,如果是则它是素数,否则不是。看如下源代码。

bool isPrime(int n)
{
	if (n < 2)
	{
		return false;
	}
	for (int i = 2; i < n; i++)
	{
		if (n % i == 0)
			return false;
	}

	return true;
}
int main()
{
	bool prime[1001] = { false };
	for (int i=2;i<1001;i++)
	{
		if (isPrime(i))
		{
			cout << i << " is prime\n";
			prime[i] = true;
		}
	}
}

     如果一个大于1的整数n可以被1和n之外的另一个整数 k 1 k_1 k1整除,则有 n = k 1 ∗ k 2 n=k_1*k_2 n=k1k2 1 < k 1 < = n , n = < k 2 < n 1<k_1<=\sqrt{n},\sqrt{n}=<k_2<n 1<k1<=n ,n =<k2<n或者 1 < k 2 < = n , n = < k 1 < n 1<k_2<=\sqrt{n},\sqrt{n}=<k_1<n 1<k2<=n ,n =<k1<n。因此当我们通过验证一个大于1的整数n是否只能被1和其自己整除的方法来验证其是否为素数时可以只迭代到 n \sqrt{n} n 而不用迭代到 n − 1 n-1 n1。代码如下所示。

bool isPrime(int n)
{
	if (n < 2)
	{
		return false;
	}
	//for (int i = 2; i * i < n; i++)
	for (int i = 2; i < sqrt(n); i++)
	{
		if (n % i == 0)
			return false;
	}
	return true;
}
int main()
{
	bool prime[1001] = { false };
	for (int i=2;i<1001;i++)
	{
		if (isPrime(i))
		{
			cout << i << " is prime\n";
			prime[i] = true;
		}
	}
}

     素数从2开始,2是素数则 2 × 2 , 2 × 3 , 2 × 4 , . . . 2\times2,2\times3,2\times4,... 2×2,2×3,2×4,...都不是素数,因此可用排除法来求得所需的素数。代码如下所示。


int main()
{
	bool prime[1001] = { true };
	for (int i = 0; i < 1001; i++)
	{
		prime[i] =  true ;
	}
	for (int i=2;i<1001;i++)
	{
		if (prime[i])//如果i为素数则i的倍数都不为素数
		{
			for (int j = 2 * i; j < 1001; j += i)
			{
				prime[j] = false;
			}

		}
	}

	for (int i = 2; i < 1001; i++)
	{
		if (prime[i])
		{
			cout << i << " is prime\n";
		}
	}
	return 0;
}

     以上的算法中,2是素数则 2 × 2 , 2 × 3 , 2 × 4 , . . . 2\times2,2\times3,2\times4,... 2×2,2×3,2×4,...都被我们排除了,但是i迭代到3时 3 × 2 3\times2 3×2 2 × 3 2\times3 2×3又被重复的排除了一次,这是多余的。因此每次迭代到i时可以从 i × i i\times i i×i开始排除。以下是代码。

int main()
{
	bool prime[1001] = { true };
	for (int i = 0; i < 1001; i++)
	{
		prime[i] =  true ;
	}
	for (int i=2;i<1001;i++)
	{
		if (prime[i])//如果i为素数则i的倍数都不为素数
		{
			for (int j = i * i; j < 1001; j += i) //从i的平方开始排除
			{
				prime[j] = false;
			}

		}
	}

	for (int i = 2; i < 1001; i++)
	{
		if (prime[i])
		{
			cout << i << " is prime\n";
		}
	}
	return 0;
}

     如果 k > = 1 k>=1 k>=1,对于 6 k , 6 k + 1 , 6 k + 2 , 6 k + 3 , 6 k + 4 , 6 k + 5 6k,6k+1,6k+2,6k+3,6k+4,6k+5 6k,6k+1,6k+2,6k+3,6k+4,6k+5,按照素数的定义 6 k = 3 × ( 2 k ) , 6 k + 2 = 2 × ( 3 k + 1 ) , 6 k + 3 = 3 × ( 2 k + 1 ) , 6 k + 4 = 2 × ( 3 k + 2 ) 6k=3\times(2k),6k+2=2\times(3k+1),6k+3=3\times(2k+1),6k+4=2\times(3k+2) 6k=3×(2k),6k+2=2×(3k+1),6k+3=3×(2k+1),6k+4=2×(3k+2)绝对不是素数。 6 k + 1 , 6 k + 5 6k+1,6k+5 6k+16k+5有可能是素数。对于 n , n > = 6 n,n>=6 n,n>=6如果它对6取模后不等于1或者5,则它肯定不是素数,如果它对6取模后等于1或者5可以再另行检查。又因为 6 k + 1 , 6 k + 5 6k+1,6k+5 6k+16k+5为奇数且 6 k + 1 = 3 × ( 2 k ) + 1 , 6 k + 5 = 3 × ( 2 k + 1 ) + 2 6k+1=3\times(2k)+1,6k+5=3\times(2k+1)+2 6k+1=3×(2k)+16k+5=3×(2k+1)+2,所以它们肯定不能被偶数整除且肯定不能被3整除。从前面的算法我们可以知道判断一个数n是不是素数,只需判断其能否被2到 n \sqrt{n} n 的数整除,通过以上的讨论以及图1现在只需判断其能否被在范围 2 − > n 2->\sqrt{n} 2>n 内且且不在红色区域内的数整除来判断其是否是素数。可以得到如下代码所示的算法。

 
图1.

int main()
{
	bool prime[1001];
	for (int i = 0; i < 1001; i++)
	{
		prime[i] =  true ;
	}
	prime[0] = false;
	prime[1] = false;
	prime[4] = false;

	for (int i=6;i<1001;i++)
	{
		if ((i % 6 != 1) && (i % 6 != 5))
		{
			prime[i] = false;
			continue;
		}
		else
		{
			for (int j = 5; j <= sqrt(i); j += 6)
			{
				if (i % j == 0 || i % (j + 2) == 0)
				{
					prime[i] = false;
					continue;
				}
			}
		}
	}

	for (int i = 2; i < 1001; i++)
	{
		if (prime[i])
		{
			cout << i << " is prime\n";
		}
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qqssss121dfd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值