首先定义一个向量为:a=[-5,6,8, -10]
向量的1范数即:向量的各个元素的绝对值之和,上述向量a的1范数结果就是:29,MATLAB代码实现为:norm(a,1);
向量的2范数即:向量的每个元素的平方和再开平方根,上述a的2范数结果就是:15,MATLAB代码实现为:norm(a,2);
向量的负无穷范数即:向量的所有元素的绝对值中最小的:上述向量a的负无穷范数结果就是:5,MATLAB代码实现为:norm(a,-inf);
向量的正无穷范数即:向量的所有元素的绝对值中最大的:上述向量a的负无穷范数结果就是:10,MATLAB代码实现为:norm(a,inf);
首先我们将介绍数学中矩阵的范数的情况,以矩阵A = [ -1 2 -3;4 -6 6] 为例。
矩阵的1范数即:矩阵的每一列上的元素绝对值先求和,再从中取个最大的,(列和最大),上述矩阵A的1范数先得到[5,8,9],再取最大的最终结果就是:9,MATLAB代码实现为:norm(A,1);
矩阵的2范数即:矩阵ATA的最大特征值开平方根,上述矩阵A的2范数得到的最终结果是:10.0623,MATLAB代码实现为:norm(A,2);
矩阵的无穷范数即:矩阵的每一行上的元素绝对值先求和,再从中取个最大的,(行和最大),上述矩阵A的1范数先得到[6;16],再取最大的最终结果就是:16,MATLAB代码实现为:norm(A,inf);
接下来我们要介绍机器学习的低秩,稀疏等一些地方用到的范数,一般有核范数,L0范数,L1范数(有时很多人也叫1范数,这就让初学者很容易混淆),L21范数(有时也叫2范数),F范数。上述范数都是为了解决实际问题中的困难而提出的新的范数定义,不同于前面的矩阵范数。
矩阵的核范数即:矩阵的奇异值(将矩阵svd分解)之和,这个范数可以用来低秩表示(因为最小化核范数,相当于最小化矩阵的秩——低秩),上述矩阵A最终结果就是:10.9287, MATLAB代码实现为:sum(svd(A))
矩阵的L0范数即:矩阵的非0元素的个数,通常用它来表示稀疏,L0范数越小0元素越多,也就越稀疏,上述矩阵A最终结果就是:6
矩阵的L1范数即:矩阵中的每个元素绝对值之和,它是L0范数的最优凸近似,因此它也可以表示稀疏,上述矩阵A最终结果就是:22,MATLAB代码实现为:sum(sum(abs(A)))
矩阵的F范数即:矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的L2范数,它的有点在它是一个凸函数,可以求导求解,易于计算,上述矩阵A最终结果就是:10.0995,MATLAB代码实现为:norm(A,‘fro’)
矩阵的L21范数即:矩阵先以每一列为单位,求每一列的F范数(也可认为是向量的2范数),然后再将得到的结果求L1范数(也可认为是向量的1范数),很容易看出它是介于L1和L2之间的一种范数,上述矩阵A最终结果就是:17.1559,MATLAB代码实现为: norm(A(:,1),2) + norm(A(:,2),2) + norm(A(:,3),2)