小 A 是社团里的工具人,有一天他的朋友给了他一个 nn 个点,mm 条边的正权连通无向图,要他计算所有点两两之间的最短路。
作为一个工具人,小 A 熟练掌握着 floyd 算法,设 w[i][j]w[i][j] 为原图中 (i,j)(i,j) 之间的权值最小的边的权值,若没有边则 w[i][j]=w[i][j]=无穷大。特别地,若 i=ji=j,则 w[i][j]=0w[i][j]=0。
Floyd 的 C++ 实现如下:
for(int k=1;k<=p;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
w[i][j]=min(w[i][j],w[i][k]+w[k][j]);
当 p=np=n 时,该代码就是我们所熟知的 floydfloyd,然而小 A 为了让代码跑的更快点,所以想减少 pp 的值。
令 D_{i,j}Di,j 为最小的非负整数 xx,满足当 p=xp=x 时,点 ii 与点 jj 之间的最短路被正确计算了。
现在你需要求 \sum_{i=1}^{n}\sum_{j=1}^{n}D_{i,j}∑i=1n∑j=1nDi,j,虽然答案不会很大,但为了显得本题像个计数题,你还是需要将答案对 998244353998244353 取模后输出。
Input
第一行一个正整数 T(T\leq 30)T(T≤30) 表示数据组数
对于每组数据:
第一行两个正整数 n,m(1\leq n\leq 1000,m\leq 2000)n,m(1≤n≤1000,m≤2000),表示点数和边数。
保证最多只有 55 组数据满足 max(n,m)>200max(n,m)>200
接下来 mm 行,每行三个正整数 u,v,wu,v,w 描述一条边权为 ww 的边 (u,v)(u,v),其中 1\leq w\leq 10^91≤w≤109
Output
输出 TT 行,第 ii 行一个非负整数表示第 ii 组数据的答案
Sample Input
1 4 4 1 2 1 2 3 1 3 4 1 4 1 1
Sample Output
Copy
6
直接暴力跑一边fload
在跑的过程之记录找到的最大值即可
#include<bits/stdc++.h>
using namespace std;
long long mat[1005][1005];
long long ans[1005][1005];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(ans,0,sizeof(ans));
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) {for(int j=1;j<=n;j++){ mat[i][j]=1e18;}}
for(int i=1;i<=m;i++)
{
int tmp1,tmp2;
long long tmp3;
scanf("%d%d%lld",&tmp1,&tmp2,&tmp3);
mat[tmp1][tmp2]=min(tmp3,mat[tmp1][tmp2]);
mat[tmp2][tmp1]=min(tmp3,mat[tmp2][tmp1]);
}
for(int i=1;i<=n;i++) mat[i][i]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=1;k<=n;k++)
{
if(mat[j][k]>mat[j][i]+mat[i][k]) mat[j][k]=mat[j][i]+mat[i][k],ans[j][k]=i;
}
}
}
long long sum=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
sum=(sum+ans[i][j])%998244353;
}
}
printf("%lld\n",sum);
}
}