孔乙己之一----this - c/c++ - CSDN技术中心

导读:
  这是一个小问题, 孔乙己一把, 全当自娱. 今天在线上被问到一个问题, 描述如下:
  #include
  using namespace std;
  class MyClass
  {
  public:
  MyClass(){};
  ~MyClass(){};
  void print()
  {
  cout <<"hello!" <
  }
  };
  int main()
  {
  MyClass * pMyClass;
  pMyClass = new MyClass;
  pMyClass->print(); // 1: 正确调用
  pMyClass[0].print(); // 2: 正确调用
  pMyClass[1].print(); // 3: 错误调用, 但结果正确
  pMyClass[10000000].print(); // 4: 错误调用, 但结果正确
  return 0;
  }
  这位兄弟有疑问的是: 为什么3和4两种方法, 下标不正确, 而其结果却完全正常? 显示的结果是:
  hello!
  hello!
  hello!
  hello!
  我把程序改了改, 将类MyClass调整成以下结构:
  class MyClass
  {
  public:
  MyClass(){ data1 =1; data2=2;};
  ~MyClass(){};
  int data1,data2;
  void print()
  {
  cout <<"hello! data1: "<
<   对于类成员函数而言, 并不是一个对象对应一个单独的成员函数体, 而是此类的所有对象共用这个成员函数体, 当程序被编译之后, 此成员函数地址即已确定. 我们常说, 调用类成员函数时, 会将当前对象的this指针传给成员函数. 没错, 一个类, 它的成员函数体只有一份, 而成员函数之所以能把属于此类的各个对象的数据区别开, 就在于每次执行类成员函数时, 都会把当前对象的this指针(也即对象首地址)传入成员函数, 函数体内所有对类数据成员的访问, 都会被转化为this->数据成员的方式.
  说到这里, 问题也就清楚了. 当print函数里, 只有"cout <<"hello" <
  但是, 还有另一个问题, 当把类MyClass再作一次调整, 成这样:
  class MyClass
  {
  public:
  MyClass(){ data1 =1;};
  ~MyClass(){};
  int data1;
  void print()
  {
  cout <<"hello! data1: "<
<   }
  };
  也就是只含有一个int类型的数据成员时, pMyClass[1].print()的访问结果有时却是正确的(不同的机子上会有不同的结果). 我想, 这个只能解释为地址对齐所造成的了(暂时存疑, 查证中, 欲知后事, 下回分解).

本文转自
http://dev.csdn.net/author/sodme/91e4f934d95946dd97b59f1bd18d27db.html
在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值