【清华集训2016】如何优雅地求和

 

读入的x把它重命名成p,首先发现式子可以化为sigma(k=0~n)ai*Q(f=x^i,n,p),其中ai是多项式的每一项系数,发现所求就是f=x,x^2,x^3......的Q的值,发现这样很难求,但带入f=x可以得到化简的一个利用二项式定理的启发,转化为Q=nx,考虑带入下降幂能发现原式被化简成n的i次下降幂*p的i次,之后考虑把f拆成下降幂形式,再在i位置乘上一个i!,就能发现下降幂变成组合数可以m方推了,也能用ntt优化。自己写的暴力求组合数被卡成95,借鉴了std。。。

#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=998244353;
const int N=2e4+10;

int qpow(int x,int y)
{
	int res=1;
	while(y)
	{
		if(y&1)res=1LL*res*x%mod;
		x=1LL*x*x%mod,y>>=1;
	}
	return res;
}
void Ad(int &x,int y)
{if((x+=y)>=mod)x-=mod;}
void Dw(int &x,int y)
{if((x-=y)<0)x+=mod;}

int n,m,p,a[N],b[N],jc[N],ijc[N];

int C(int x,int y)
{return 1LL*jc[x]*ijc[y]%mod*ijc[x-y]%mod;}

int main()
{
	scanf("%d%d%d",&n,&m,&p);
	for(int i=0;i<=m;i++)
		scanf("%d",&a[i]);
	jc[0]=1;
	for(int i=1;i<=m;i++)jc[i]=1LL*jc[i-1]*i%mod;
	ijc[m]=qpow(jc[m],mod-2);
	for(int i=m-1;i>=0;i--)ijc[i]=1LL*ijc[i+1]*(i+1)%mod;
	for(int i=0,nw;i<=m;i++)
	{
		nw=a[i];
		for(int j=0;j<i;j++)
			Dw(nw,1ll*b[j]*C(i,j)%mod);
		b[i]=nw;
	}
	int ans=0;
	for(int i=0,mi=1,mp=1;i<=m;i++)
	{
		b[i]=1LL*b[i]*ijc[i]%mod;
		Ad(ans,1LL*b[i]*mi%mod*mp%mod);
		mi=1LL*mi*(n-i)%mod,mp=1LL*mp*p%mod;
	}
	printf("%d\n",ans);
} /*
4 1 332748118
0 1
*/
#pragma GCC optimize(2)
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=998244353;
const int N=2e4+10;

int qpow(int x,int y)
{
	int res=1;
	while(y)
	{
		if(y&1)res=1LL*res*x%mod;
		x=1LL*x*x%mod,y>>=1;
	}
	return res;
}
void Ad(int &x,int y)
{if((x+=y)>=mod)x-=mod;}
void Dw(int &x,int y)
{if((x-=y)<0)x+=mod;}

int n,m,p,a[N],b[N],jc[N],ijc[N];

int C(int x,int y)
{return 1LL*jc[x]*ijc[y]%mod*ijc[x-y]%mod;}

int main()
{
	scanf("%d%d%d",&n,&m,&p);
	for(int i=0;i<=m;i++)
		scanf("%d",&a[i]);
	jc[0]=1;
	for(int i=1;i<=m;i++)jc[i]=1LL*jc[i-1]*i%mod;
	ijc[m]=qpow(jc[m],mod-2);
	for(int i=m-1;i>=0;i--)ijc[i]=1LL*ijc[i+1]*(i+1)%mod;
	for(int i=0;i<=m;i++)
	{
		b[i]=a[0];
		for(int j=0;j<m-i;j++)a[j]=(a[j+1]-a[j]+mod)%mod;
	}
	int ans=0;
	for(int i=0,mi=1;i<=m;i++)
	{
		Ad(ans,1LL*b[i]*ijc[i]%mod*mi%mod);
		mi=1LL*mi*(n-i)%mod*p%mod;
	}
	printf("%d\n",ans);
} /*
4 1 332748118
0 1
*/

 

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页