如何优雅地求和

题目
https://uoj.ac/problem/269

给定 m m m次多项式 f ( x ) , n , x f(x),n,x f(x),n,x,求
Q ( f , n , x ) = ∑ i = 0 n f ( i ) ( n i ) x i ( 1 − x ) n − i Q(f,n,x)=\sum_{i=0}^{n}f(i){n\choose i}x^i(1-x)^{n-i} Q(f,n,x)=i=0nf(i)(in)xi(1x)ni
f ( x ) f(x) f(x)给定点值表示法。 n ≤ 1 0 9 n\le 10^9 n109

思路
把多项式转换成下降幂表示,假设
f ( x ) = ∑ i = 0 m f i x i ‾ [ x ≥ i ] f(x)=\sum_{i=0}^{m}f_ix^{\underline{i}}[x\ge i] f(x)=i=0mfixi[xi]
则代入得
Q ( f , n , x ) = ∑ i = 0 n ∑ j = 0 m f j i j ‾ [ i ≥ j ] ( n i ) x i ( 1 − x ) n − i = ∑ i = 0 n ∑ j = 0 m [ i ≥ j ] f j ( n − j ) ! n j ‾ ( i − j ) ! ( n − i ) ! x i ( 1 − x ) n − i = ∑ j = 0 m f j n j ‾ x j ∑ i = 0 n [ i ≥ j ] ( n − j i − j ) x i − j ( 1 − x ) n − i = ∑ j = 0 m f j n j ‾ x j [ j ≤ n ] \begin{aligned} Q(f,n,x)&=\sum_{i=0}^{n}\sum_{j=0}^{m}f_ji^{\underline{j}}[i\ge j]{n\choose i}x^i(1-x)^{n-i}\\ &=\sum_{i=0}^{n}\sum_{j=0}^{m}[i\ge j]f_j\frac{(n-j)!n^{\underline{j}}}{(i-j)!(n-i)!}x^i(1-x)^{n-i}\\ &=\sum_{j=0}^{m}f_jn^{\underline{j}}x^j\sum_{i=0}^{n}[i\ge j]{n-j\choose i-j}x^{i-j}(1-x)^{n-i}\\ &=\sum_{j=0}^{m}f_jn^{\underline{j}}x^j[j\le n] \end{aligned} Q(f,n,x)=i=0nj=0mfjij[ij](in)xi(1x)ni=i=0nj=0m[ij]fj(ij)!(ni)!(nj)!njxi(1x)ni=j=0mfjnjxji=0n[ij](ijnj)xij(1x)ni=j=0mfjnjxj[jn]
f i f_i fi的求解https://blog.csdn.net/qq_43520313/article/details/115285601

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=2100009;
const ll mod=998244353,G=3;//G是mod的原根
int m,n;
ll x,ans=0;
ll a[N],b[N],c[N];


int bit,lim,r[N];//lim表示当前运算的长度
ll ln[N],inv[N],tmp[N],diff[N],integral[N],sqr[N],quotient[N],remain[N],aa[N],bb[N],ex[N];//注意清空
ll p[N],p1[N],Gi,_inv;//Gi是原根的逆元,_inv是lim的逆元

ll qpow(ll a,ll b) {ll res=1;a%=mod;while(b) {if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}
void poly_diff(int n,ll *a) { //求导,模x^n,diff为导函数
    memset(diff,0,sizeof(diff));
    for(int i=1; i<n; i++)diff[i-1]=a[i]*i%mod;
    diff[n-1]=0;
}
void poly_integral(int n,ll *a) { //积分,模x^n,integral为积分函数
    memset(integral,0,sizeof(integral));
    for(int i=0; i<n-1; i++)integral[i+1]=a[i]*qpow(i+1,mod-2)%mod;
    integral[0]=0;
}
void _init(int n) { //n为多项式相乘可能最长的长度,只需初始化一次
    Gi=qpow(G,mod-2);
    for(int i=1; i<n; i<<=1)p[i]=qpow(G,(mod-1)/(i<<1)),p1[i]=qpow(Gi,(mod-1)/(i<<1));
}
void init(int n,int m) { //n,m表示长度,每次运算调用一次
    lim=1,bit=0;
    while(lim<n+m-1)lim<<=1,bit++;
    _inv=qpow(lim,mod-2);
    for(int i=0; i<lim; i++)r[i]=(r[i>>1]>>1)|((i&1)<<(bit-1));
}
void NTT(ll *a,int type) {
    for(int i=0; i<lim; i++)if(i<r[i])swap(a[i],a[r[i]]);
    for(int mid=1; mid<lim; mid<<=1) {
        ll W=(type==1?p[mid]:p1[mid]);
        for(int r=mid<<1,j=0; j<lim; j+=r) {
            ll e=1;
            for(int k=0; k<mid; k++,e=e*W%mod) {
                ll x=a[j+k],y=e*a[j+k+mid]%mod;
                a[j+k]=(x+y)%mod,a[j+k+mid]=(x-y+mod)%mod;
            }
        }
    }
    if(type==-1)for(int i=0; i<lim; i++)a[i]=a[i]*_inv%mod;
}
void poly_inv(int n,ll *a) { //模x^n,a为原函数,inv存逆元
    if(n==1) {
        memset(inv,0,sizeof(inv));
        memset(tmp,0,sizeof(tmp));
        inv[0]=qpow(a[0],mod-2);
        return ;
    }
    poly_inv((n+1)/2,a);
    init(n,n);
    for(int i=0; i<n; i++)tmp[i]=a[i];
    for(int i=n; i<lim; i++)tmp[i]=0;
    NTT(tmp,1),NTT(inv,1);
    for(int i=0; i<lim; i++)inv[i]=(2-tmp[i]*inv[i]%mod+mod)%mod*inv[i]%mod;
    NTT(inv,-1);
    for(int i=n; i<lim; i++)inv[i]=0;
}
void poly_ln(int n,ll *a) { //模x^n,a为原函数,ln存对数
    memset(ln,0,sizeof(ln));
    memset(tmp,0,sizeof(tmp));
    poly_inv(n,a);
    poly_diff(n,a);
    init(n,n);
    NTT(inv,1),NTT(diff,1);
    for(int i=0; i<lim; i++)tmp[i]=inv[i]*diff[i]%mod;
    NTT(tmp,-1);
    poly_integral(n,tmp);
    for(int i=0; i<n; i++)ln[i]=integral[i];
}
void poly_sqrt(int n,ll *a) { //模x^n,a为原函数,sqr存开方
    if(n==1) {
        memset(tmp,0,sizeof(tmp));
        memset(sqr,0,sizeof(sqr));
        sqr[0]=1;//一般情况用二次剩余
        return ;
    }
    poly_sqrt((n+1)/2,a);
    poly_inv(n,sqr);
    init(n,n);
    for(int i=0; i<n; i++)tmp[i]=a[i];
    for(int i=n; i<lim; i++)tmp[i]=0;
    NTT(tmp,1),NTT(sqr,1),NTT(inv,1);
    for(int i=0; i<lim; i++)sqr[i]=(tmp[i]+sqr[i]*sqr[i]%mod)%mod*qpow(2,mod-2)%mod*inv[i]%mod;
    NTT(sqr,-1);
    for(int i=n; i<lim; i++)sqr[i]=0;
}
void poly_exp(int n,ll *a) { //模x^n,a为原函数,ex存指数
    if(n==1) {
        memset(ex,0,sizeof(ex));
        memset(tmp,0,sizeof(tmp));
        ex[0]=1;
        return ;
    }
    poly_exp((n+1)/2,a);
    poly_ln(n,ex);
    init(n,n);
    for(int i=0; i<n; i++)tmp[i]=a[i];
    for(int i=n; i<lim; i++)tmp[i]=0;
    tmp[0]=(1-ln[0]+tmp[0]+mod)%mod;
    for(int i=1; i<lim; i++)tmp[i]=(tmp[i]-ln[i]+mod)%mod;
    NTT(ex,1),NTT(tmp,1);
    for(int i=0; i<lim; i++)ex[i]=ex[i]*tmp[i]%mod;
    NTT(ex,-1);
    for(int i=n; i<lim; i++)ex[i]=0;
}
void poly_div(int n,int m,ll a[],ll b[]) { //a除以b,n为a的长度,m为b的长度,quotient存商,remain存余数
    memset(quotient,0,sizeof(quotient));
    memset(remain,0,sizeof(remain));
    memset(tmp,0,sizeof(tmp));
    if(n<m) { //

    }
    for(int i=0; i<n; i++)aa[i]=a[i];
    for(int i=0; i<m; i++)bb[i]=b[i];
    for(int i=0; i<=(n-1)/2; i++)swap(a[i],a[n-1-i]);
    for(int i=0; i<=(m-1)/2; i++)swap(b[i],b[m-1-i]);
    poly_inv(n-m+1,b);
    init(n-m+1,n-m+1);
    for(int i=n-m+1; i<lim; i++)a[i]=0;
    NTT(a,1),NTT(inv,1);
    for(int i=0; i<lim; i++)quotient[i]=a[i]*inv[i]%mod;
    NTT(quotient,-1),NTT(a,-1);
    for(int i=n-m+1; i<lim; i++)quotient[i]=0;
    for(int i=0; i<=(n-m)/2; i++)swap(quotient[i],quotient[n-m-i]);
    init(n-m+1,m);
    NTT(quotient,1),NTT(bb,1);
    for(int i=0; i<lim; i++)tmp[i]=quotient[i]*bb[i]%mod;
    NTT(tmp,-1),NTT(quotient,-1);
    for(int i=0; i<n; i++)remain[i]=(aa[i]-tmp[i]+mod)%mod;
}

int main() {
    _init(300000);
    ll jie=1;
    scanf("%d%d%lld",&n,&m,&x);
    for(int i=0;i<=m;i++)
        scanf("%lld",&a[i]);
    for(int i=1;i<=m;i++)
        jie=jie*i%mod,a[i]=a[i]*qpow(jie,mod-2);
    jie=1;
    b[0]=1;
    for(int i=1;i<=m;i++)
        jie=jie*i%mod,b[i]=qpow(jie,mod-2)*(i%2?(mod-1):1)%mod;
    init(m+1,m+1);
    NTT(a,1),NTT(b,1);
    for(int i=0;i<lim;i++)
        c[i]=a[i]*b[i]%mod;
    NTT(c,-1);
    ans=c[0];
    ll tmp=1;
    for(int i=1;i<=min(n,m);i++)
        tmp=tmp*(n-i+1)%mod,ans=(ans+c[i]*tmp%mod*qpow(x,i)%mod)%mod;
    printf("%lld",ans);
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值