如何优雅地求和?

给定 m , n , p , f ( 1 ) , … , f ( m ) m,n,p,f(1),\dots,f(m) m,n,p,f(1),,f(m),求出
∑ i = 0 n f ( i ) ( n i ) p i ( 1 − p ) n − i \sum_{i=0}^nf(i)\binom{n}{i}p^i(1-p)^{n-i} i=0nf(i)(in)pi(1p)ni
G F \mathcal{GF} GF 告诉我们一种很优雅的方式:
∑ c t [ z t ] ( p e z + 1 − p ) n \sum c_t[z^t](pe^z+1-p)^n ct[zt](pez+1p)n
是很优美,但是给点值很不友好
注意到后面一坨就是二项分布
考虑其母函数
g X ( z ) = ∑ k ≥ 0 Pr [ X = k ] z k g_X(z)=\sum_{k\ge 0}\text{Pr}[X=k]z^k gX(z)=k0Pr[X=k]zk
在这里
g X ( z ) = ∑ k ≥ 0 ( n k ) p i ( 1 − p ) n − i z i = ( p z + 1 − p ) n g_X(z)=\sum_{k\ge 0}\binom{n}{k}p^i(1-p)^{n-i}z^i=(pz+1-p)^n gX(z)=k0(kn)pi(1p)nizi=(pz+1p)n
我们知道
g ( k ) ( 1 ) = E [ X k ‾ ] g^{(k)}(1)=\text{E}[X^{\underline k}] g(k)(1)=E[Xk]
所以说
∑ i = 0 n i t ‾ ( n i ) p i ( 1 − p ) n − i = E [ X t ‾ ] = ( p z + 1 − p ) n − k n k ‾ p k ∣ z = 1 = n k ‾ p k \sum_{i=0}^ni^{\underline t}\binom{n}{i}p^i(1-p)^{n-i}=\text{E}[X^{\underline t}]=(pz+1-p)^{n-k}n^{\underline k}p^k\Big|_{z=1}=n^{\underline k}p^k i=0nit(in)pi(1p)ni=E[Xt]=(pz+1p)nknkpkz=1=nkpk
当然也可以直接推
∑ i i t ‾ ( n i ) p i ( 1 − p ) n − i = ∑ i ≥ t n t ‾ ( n − t i − t ) p i ( 1 − p ) n − i = n t ‾ p t \sum _ii^{\underline t}\binom{n}{i}p^i(1-p)^{n-i}\\=\sum_{i\ge t}n^{\underline t}\binom{n-t}{i-t}p^i(1-p)^{n-i}=n^{\underline t}p^t iit(in)pi(1p)ni=itnt(itnt)pi(1p)ni=ntpt
不过题目希望你优雅地求和

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值