为什么有的人信息越多判断越错

我们讲人生关键决策的时候,其实讲过,信息情报越充分,那么决策的可靠性越高。

但现实似乎总是不那么正确,很多时候,掌握更充分情报,更充分信息的人,反而容易出现重大的判断失误,从而造成非常错误的决策。

那比如早期百度的大部分员工,没有能拿住公司的股票,在很低的价格就进行了抛售,其实他们掌握公司内部很多更准确,更清晰的信息,但在判断公司走势和发展潜力的时候,却还不如很多外面的看客。

在十多年前,有些大公司背景的创业者也存在这个问题,他们从大公司出来创业,其实掌握很多行业内非常难以获取的情报和信息数据,但是创业过程中却屡屡犯错,错失良机,在和草根创业者的比拼中,往往落于下风。

问题在哪里呢?

判断被大量噪音信息干扰了。

比如我们判断某个公司,某项业务的发展,有10个利空信息,有2个利好信息,那么我们会怎么看,也许大部分会觉得利空。但实际上可能只有一条利好消息是具有绝对意义的,其他的信息,未必是错的,但是和那一条利好相比,根本不算什么。

信息的权重,很多人可能会认为,关键的信息,比其他的信息(当然,所有前提是真实的),权重多一倍?两倍?实际上可能是一百倍,两百倍。

很多人在自己公司里,会觉得竞争对手更有优势,原因是,自己公司里会看到很多外面看不到的问题,这些问题存在么?都存在。而且感受会很深,毕竟和自己的饭碗,自己每天的工作体验密切相关,所以默许会认为这些问题很严重,但实际上,这些存在的问题,对这个企业的发展趋势而言,所起到的影响作用,可能远远不如一两个关键点。但这就是当局者被大量噪音信息淹没,失去了对关键信息的把握和判断。

当年百度员工为什么会那么容易贱卖百度的期权和股票,本质也就是这个原因,他们知道很多公司内部存在的问题,并且因为这些问题和自己的日常工作息息相关,就会上放大这些内部问题对公司的影响。从而失去了对市场增长的真实判断。他们只看到了企业本身的问题,却忽视了行业巨大的爆炸性的增长空间。是的,这里也包括了我在内。

所以我们在判断一个行业,企业,或者投资目标发展趋势的时候,不是说信息多不好,而是必须明确,信息的权重,什么信息是最核心的,最关键的,什么信息决定了其他所有。

我前段时间和一个金融领域经验丰富的朋友喝茶聊天,回顾了几年前曾经探讨过某知名教育类顶部海外上市公司的发展趋势,我们当时彼此交换了一些判断依据和关键信息,但是若干年后回望,那些信息其实全都不重要,因为存在一条我们忽略的事件,彻底改变了整个行业,这时候,再去看之前那些所谓的重要情报信息,都变得毫无意义。

这件事让我反思,影响最终结果的关键信息和情报,可能往往只有一两条,当我们陷入大量的信息情报中的时候,如何把握关键,抓住最核心的那一条,才是最重要的。

最近很多人还在咨询投资方面的事情,比如说中概股的可投资性,但我也在讲,你分析企业的技术实力,市场发展空间,用户构成,产品优劣,这些传统的所谓投资分析方式,可能都已经不再重要。当超越一切的因素出现后,其他的因素的影响就几乎可以忽略。

信息多当然不是说不好,但如何看待信息,需要考验你的判断力,底层逻辑能力,抓住最关键的信息,理解不同信息的权重区别,不要被大量信息淹没后,失去了对关键信息的把握。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
遗传算法是一种常用于解决旅行商问题(TSP)的启发式优化算法。对于多人TSP问题,可以采用以下步骤来使用遗传算法进行求解: 1. 确定问题的表示方式:将每个城市看作一个节点,并构建一个完全图,其中每个节点代表一个城市,边的权重表示两个城市之间的距离。每个个体的基因表示一个城市的排列序列,即旅行的路径。 2. 初始化种群:生成一定数量的个体作为初始种群。每个个体都是一个城市排列序列,可以随机生成或采用其他启发式方法生成。 3. 评估适应度:根据个体的路径长度计算适应度值,路径长度越短,适应度越高。 4. 选择操作:采用选择操作从当前种群中选择一部分个体作为父代。常用的选择方法有轮盘赌选择、锦标赛选择等。 5. 交叉操作:通过交叉操作生成子代。可以采用顺序交叉、部分映射交叉等方法。 6. 变异操作:对子代进行变异,引入随机扰动来增加种群的多样性。可以进行交换、插入、反转等变异操作。 7. 更新种群:用新生成的个体替换原来的个体,形成新的种群。 8. 终止条件判断:根据预设的终止条件(如达到最大迭代次数或找到最优解)判断是否停止算法。 9. 重复步骤3至8,直到满足终止条件。 10. 输出结果:输出最优解,即路径最短的个体。 需要注意的是,多人TSP问题相对于传统TSP问题更加复杂,因为涉及到多个旅行商的路径规划。可以采用不同的策略来处理多人TSP问题,例如将问题分解为多个子问题、引入协同进化等方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值