贝叶斯相关知识总结

本文详述了贝叶斯统计的核心概念,包括先验概率、条件概率和后验概率,深入探讨了贝叶斯公式及其应用。此外,文章还讲解了正态分布下的贝叶斯决策,涵盖单变量和多变量情况,并介绍了最小错误率和最小风险的决策准则,结合实例解释了如何运用这些理论进行实际决策。
摘要由CSDN通过智能技术生成

贝叶斯相关知识总结

叶贝斯相关知识点包括:
先验概率
条件概率
后验概率
贝叶斯公式和相关准则
正态分布的贝叶斯决策

先验概率

根据以往经验分析得到的概率,通俗的讲就是根据统计规律得到的概率,符号表示为 P ( X ) P(X) P(X)
比如:
有红蓝两个颜色的小球,红的3个、蓝的2个,红色球的先验概率是 3 5 \frac{3}{5} 53,蓝球的先验概率是 2 5 \frac{2}{5} 52

条件概率

相关事件的概率也叫条件概率,还是用上面小球的例子说明,
事件A :第一次抓球取得蓝球的概率, P ( A ) = 2 5 P(A) = \frac{2}{5} P(A)=52
事件B :第二次抓球取得蓝球的概率, P ( B ∣ A ) = 1 4 P(B|A) = \frac{1}{4} P(BA)=41(这时候有一个蓝球和三个红球)
这里的事“|”在事件A发生的条件下,事件B发生的概率,表示为 P ( B ∣ A ) P(B|A) P(BA)

后验概率

事情已经发生,要求这个事情发生的原因是由某个因素引起的可能性大小,是后验概率(后验概率也可以被认为是一种条件概率)。具体后验概率和叶贝斯公式的讲解一起说明。

贝叶斯公式和相关准则

贝叶斯需要遵循的相关准则:
事件之间应该是相互独立的,第一个事件发生并不会影像第二个事件的概率。
贝叶斯相关公式:
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) p ( B ) P(A|B)=\frac{P(A)P(B|A)}{p(B)} P(AB)=p(B)P(A)P(BA)
下面用一个例子来说明公式:

有两个糖果袋子,每个糖果袋子中有若干糖果,其中袋子1中有30个红糖果和10个绿糖果,袋子2中两种糖果各有20个。那么随机选取一个袋子,并总其中随机选取一个糖果,若这个糖果是红色的。那么这个糖果来自袋子1的概率有多大?
设:

从任意一个袋子取出红色糖果为事件R;
从任意一个袋子取出绿色糖果为事件G;
随机选择袋子的过程中,若选中袋子是袋子1,事件为 B 1 B_1 B1
随机选择袋子的过程中,若选中袋子是袋子2,事件为 B 2 B_2 B2
题目中要求解的概率是 P ( B 1 ∣ R ) P(B_1|R) P(B1R)
根据公式:
P ( B 1 ∣ R ) = P ( B 1 ) P ( R ∣ B 1 ) P ( R ) P(B_1|R)=\frac{P(B_1)P(R|B_1)}{P(R)} P(B1R)=P(R)P(B1)P(RB1)
P ( B 1 ) = 1 2 P(B_1)=\frac{1}{2} P(B1)=21
P ( R ) = 30 + 20 30 + 10 + 20 + 20 = 5 8 P(R)=\frac{30+20}{30+10+20+20}=\frac{5}{8} P(R)=30+10+20+2030+20=85
P ( R ∣ B 1 ) = 30 30 + 10 = 3 4 P(R|B_1)=\frac{30}{30+10}=\frac{3}{4} P(RB1)=30+1030=43
P ( B 1 ∣ R ) = P ( B 1 ) P ( R ∣ B 1 ) P ( R ) = 1 2 ∗ 3 4 5 8 = 0.6 P(B_1|R)=\frac{P(B_1)P(R|B_1)}{P(R)}=\frac{\frac{1}{2}*\frac{3}{4}}{\frac{5}{8}}=0.6 P(B1R)=P(R)P(B1)P(RB1)=852143=0.6

正态分布的贝叶斯决策

单变量正态分布

一些主要公式:
单变量概率密度函数
p ( x ) = 1 2 π σ e ( − 1 2 ( x − μ σ ) 2 ) p(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2)} p(x)=2π σ1e(21(σxμ)2)
期望
μ = E x = ∫ x p ( x ) d x \mu=E{x}=\int xp(x){\rm d}x μ=Ex=xp(x)dx
方差
σ 2 = E ( x − μ ) 2 = ∫ ( x − μ ) 2 p ( x ) d x \sigma^2=E{(x-\mu)^2}=\int (x-\mu)^2p(x){\rm d}x σ2=E(xμ)2=(xμ)2p(x)dx

多变量正态分布

多变量概率密度函数
p ( x ) = 1 ( 2 π ) 1 2 ∣ ∣ Σ ∣ 1 2 e ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) ) , x ∈ R l p(x)=\frac{1}{(2\pi)^\frac{1}{2}||\Sigma|^\frac{1}{2}}e^{(-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)))},x \in R^l p(x)=(2π)21Σ211e(21(xμ)TΣ1(xμ)))xRl
期望
μ = E [ x ] = E [ x 1 , x 2 , . . . . . . , x l ] \mu=E[x]=E[x_1,x_2,......,x_l] μ=E[x]=E[x1,x2,......,xl]
协方差矩阵
Σ = E [ ( x − μ ) ( x − μ ) T ] \Sigma=E[(x-\mu)(x-\mu)^T] Σ=E[(xμ)(xμ)T]
= [ σ 11 2 σ 12 2 . . . σ 1 l 2 σ 21 2 σ 22 2 . . . σ 2 l 2 . . . . . . . . . . . . σ l 1 2 σ l 2 2 . . . σ l l 2 ] =\left[ \begin{matrix} \sigma^2_{11} & \sigma^2_{12} & ... & \sigma^2_{1l}\\ \sigma^2_{21} & \sigma^2_{22} & ... & \sigma^2_{2l}\\ ... & ... & ... & ... \\ \sigma^2_{l1} & \sigma^2_{l2} & ... & \sigma^2_{ll} \end{matrix} \right] =σ112

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值