机器学习十之贝叶斯相关知识

十九、贝叶斯       

       在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数Y=f(X),要么是条件分布P(Y|X)。但是朴素贝叶斯却是生成方法,也就是直接找出特征输出Y和特征X的联合分布P(X,Y),然后用P(Y|X)=P(X,Y)/P(X)得出。

      贝叶斯学派的思想可以概括为先验概率+数据=后验概率。也就是说我们在实际问题中需要得到的后验概率,可以通过先验概率和数据一起综合得到。

       求解的目的:P(Y = Ck|X = X(test))

 

 

朴素贝叶斯:在原始的贝叶斯问题上假设特征之间是相互独立的,互不影响的。

即:  P(X|Y) = P(x1|Y)*P(x2|x1,Y)*P(x3|x2,x1,Y)*...

变为:P(X|Y) = P(x1|Y)*P(x2|Y)*P(x3|Y)*...

那么怎么在训练集中球的P(Y = Ck) 和 P(Xj = Xj(test)|Y = Ck)?

 

总的来说就是计算:样本总数m,类别Ck在训练数据中出现的次数,以及在类别Ck下第j特征出现的次数。

朴素贝叶斯优点:

1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。

2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。

3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。

朴素贝叶斯缺点:   

1) 理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下,假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。

2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。

3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。

4)对输入数据的表达形式很敏感。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值