Python - 安装sentencepiece异常

在安装transformers库时,sentencepiece无法安装,如下:

pip3 install --user transformers

解决问题参考:Pip install sentencepiece failure

在安装sentencepiece,无法进行,如下:

Building wheels for collected packages: sentencepiece
  Building wheel for sentencepiece (setup.py) ...

长时间等待,异常如下:

  ./build_bundled.sh:行15: cmake: 未找到命令
  make: *** 没有指明目标并且找不到 makefile。 停止。
  make: *** 没有规则可以创建目标“install”。 停止。
  Package sentencepiece was not found in the pkg-config search path.
  Perhaps you should add the directory containing `sentencepiece.pc'
  to the PKG_CONFIG_PATH environment variable
  No package 'sentencepiece' found
  Failed to find sentencepiece pkg-config
  ----------------------------------------
  ERROR: Failed building wheel for sentencepiece

单独安装sentencepiece,也会出现异常。

pip3 install --user sentencepiece

下载sentencepiece的对应版本

sentencepiece

例如,CentOS 7对应的版本:
CentOS
下载之后,安装

pip3 install --user sentencepiece-0.1.94-cp37-cp37m-manylinux2014_x86_64.whl

提示错误:平台版本不对,如下。

ERROR: sentencepiece-0.1.94-cp37-cp37m-manylinux2014_x86_64.whl is not a supported wheel on this platform.
WARNING: You are using pip version 19.2.3, however version 20.2.4 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.

修改python库的命名方式,manylinux2014 ->linux, 即可:

mv sentencepiece-0.1.94-cp37-cp37m-manylinux2014_x86_64.whl sentencepiece-0.1.94-cp37-cp37m-linux_x86_64.whl

再次安装,即可:

pip3 install --user sentencepiece-0.1.94-cp37-cp37m-linux_x86_64.whl

最后安装transformers,即可

pip3 install --user transformers
### 如何运行 KTransformers 项目 为了成功运行 KTransformers 项目,需遵循特定步骤以确保环境配置无误并能顺利执行代码。 #### 安装依赖库 在开始之前,确认已安装必要的 Python 库。通常情况下,推荐创建一个新的虚拟环境来隔离这些依赖项。可以使用 pip 来安装所需的包: ```bash pip install numpy torch transformers sentencepiece protobuf ``` 这一步骤有助于避免与其他项目的版本冲突,并确保兼容性[^1]。 #### 获取源码 前往官方 GitHub 页面获取最新版的 KTransformers 源码。通过克隆仓库到本地计算机上完成下载操作: ```bash git clone https://github.com/kvcache-ai/ktransformers.git cd ktransformers ``` 此命令会复制整个项目文件夹至当前目录下,便于后续开发与调试工作开展[^2]。 #### 配置环境变量(如有必要) 部分模型可能需要设置额外的环境参数才能正常运作。具体需求取决于所使用的预训练模型种类及其对应的 API 接口文档说明。一般而言,大多数场景无需特别调整,默认配置即能满足基本功能实现的要求。 #### 启动服务端程序 进入 `examples` 文件夹内找到合适的样例脚本作为入口点启动应用实例。例如,对于简单的推理任务来说,可以直接调用如下指令加载默认设定下的 Transformer 架构进行预测处理: ```python from ktransformers import pipeline nlp = pipeline('text-classification') result = nlp("I love programming.") print(result) ``` 上述代码片段展示了如何利用内置工具快速构建文本分类器,并对其输入字符串做出情感倾向判断[^3]。 如果遇到任何异常状况无法继续前进,则建议先查阅错误日志信息定位问题所在;其次访问官方论坛寻求帮助或参考其他开发者分享的经验贴寻找解决办法。
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值