欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/142629289
免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。
RAG (Retrieval-Augmented Generation,检索增强生成) 的多路召回,包括向量召回和本文召回,可用于精准知识问答,减轻大模型的幻觉问题,即:
- 并行:同时使用文本召回和向量召回,合计获得 TopN 个样本,再使用重排序的方式,获得 TopK 个样本,作为最终的召回文本。
- 串行:优先使用文本召回,召回 TopN 个样本,再使用