LLM - 使用 RAG (检索增强生成) 多路召回 实现 精准知识问答 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/142629289

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


RAG

RAG (Retrieval-Augmented Generation,检索增强生成) 的多路召回,包括向量召回和本文召回,可用于精准知识问答,减轻大模型的幻觉问题,即:

  1. 并行:同时使用文本召回和向量召回,合计获得 TopN 个样本,再使用重排序的方式,获得 TopK 个样本,作为最终的召回文本。
  2. 串行:优先使用文本召回,召回 TopN 个样本,再使用
### Llama Index 多路召回功能的实现使用 Llama Index 是一种用于处理大规模数据集的有效索引结构,在自然语言处理和其他机器学习应用中有广泛应用。对于多路召回功能,该特性允许系统并行查询多个索引来提高检索效率和准确性。 为了减少GPU内存峰值使用以及优化计算资源分配,可以采用类似于图2所示的方法来管理前向传播和反向传播过程中的梯度计算[^1]。具体到Llama Index 的多路召回机制,则意味着可以在不同路径之间交替执行这些操作以达到更好的性能表现。 以下是Python代码片段展示如何初始化和支持多路召回: ```python from llama_index import MultiRecallIndex # 创建一个多路召回索引实例 multi_recall = MultiRecallIndex() # 添加文档至各个子索引中 for i in range(number_of_subindices): subindex_docs = get_documents_for_subindex(i) multi_recall.add_to_subindex(subindex_docs, index=i) def perform_multi_recall(query_string): results = [] # 对每个子索引发起独立查询请求 for idx in range(multi_recall.num_indices()): result = multi_recall.search_in_subindex(query=query_string, index=idx) results.append(result) return aggregate_results(results) query_result = perform_multi_recall("example query string") print(query_result) ``` 此段代码展示了创建`MultiRecallIndex`对象并将文档分布存储于不同的子索引内;当接收到查询字符串时,会针对每一个单独建立好的子索引进行搜索,并最终汇总返回结果给用户。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值