RAG检索增强生成只是起步,真正的智能问答=强化学习+大模型(各类型), 实现智能调度,SELF-RAG(自反思)。

本文探讨了RAG(检索增强生成)在智能问答中的应用及其优势,指出其在处理私有数据和动态更新场景中的价值。同时,分析了RAG面临的挑战,如知识混淆、召回混淆等问题,并提出了优化方案,包括元数据过滤、全文处理、数值计算等单元建设。最后,提出将RAG与Agent结合,实现更智能的问答系统,并强调了成本考量与模块化的构建思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RAG检索增强生成是近期几个大模型应用方向上 最难下笔的一个:

  • 一方面是因为技术方案仍在快速迭代;
  • 另一方面是市场对它的认知还存在一定偏差。

目前市场认为:chatBI(让大模型做数据查询和分析)很有用但是有难度;Agent(让大模型自助规划任务实现用户复杂的需求)虽然很酷炫,但是落地的应用少,不够成熟。

而对于 RAG,企业都很明确它的价值,并且技术实现上,一顿组合拳疯狂输出(文本切割 + 向量数据库 + 大模型)就能解决问题,是企业落地的不二之选。

事实真的是这样吗?这篇主要来记录一下我们在 RAG 方向有限的场景中遇到的问题及思考过程,抛砖引玉。

1.RAG检索增强 快速解读

全称 Retrieval-Augmented Generation,检索增强生成。

举个例子,比如我作为员工,直接问大模型:

提问:『 我们公司几点下班?』

大模型在没有见过我们公司《[员工手册])》的情况下(事实上,企业私有数据

<think>好的,我现在需要回答用户关于“可结合Cursor开发的支持本地大模型和MCP的RAG架构”的问题。首先,我得理解每个术语的含义以及它们之间的关系。 首先,RAG架构是检索增强生成(Retrieval-Augmented Generation),结合了信息检索生成模型,用来提升生成内容的准确性和相关性。本地大模型应该指的是在本地部署的大型语言模型(LLM),比如Llama、GPT-NeoX等,这样可以保证数据隐私和减少延迟。MCP可能是指模型控制平台(Model Control Platform)或者某种管理协调平台,需要确认缩写。假设MCP在这里是模型协调平台,负责管理多个模型或组件的协作。 接下来,Cursor是一个开发工具,可能类似于VS Code,支持代码编写、调试等功能。用户希望结合Cursor开发一个支持本地大模型和MCP的RAG架构。需要思考如何将这些元素整合在一起。 首先,架构的组成部分应该包括: 1. 本地大模型:负责生成回答,需要处理中文,可能需要选择适合的中文预训练模型。 2. 检索系统:用于从本地或外部知识库中检索相关信息,可能需要使用向量数据库如FAISS、Annoy等。 3. MCP:协调检索生成过程,可能处理请求路由、结果整合等。 4. Cursor集成:作为开发环境,可能需要插件或扩展来支持RAG工作流的开发和调试。 然后,考虑各部分如何协作。用户提问后,系统先通过检索模块从知识库中找到相关文档或段落,将检索结果和问题一起输入本地大模型生成回答。MCP可能在这里管理检索策略、模型调用、结果后处理等。 需要注意的点包括: - 本地部署的数据隐私和安全性。 - 检索效率,尤其是大规模知识库时的响应时间。 - 模型与检索结果的结合方式,比如如何将检索到的信息有效融入生成过程。 - Cursor的具体支持方式,是否通过API、插件或自定义脚本。 可能的挑战: - 本地大模型的资源需求,如显存、计算能力。 - 中文处理的支持,包括分词、嵌入模型的选择。 - MCP的设计复杂度,确保各组件高效通信。 需要验证的信息: - MCP的具体定义,是否有其他可能的全称。 - Cursor是否提供特定的API或开发工具包,方便集成本地模型和检索系统。 - 是否有现有的开源项目或案例参考。 总结步骤: 1. 确定各组件技术选型:如本地大模型选Chinese-Alpaca,检索用FAISS,MCP用自定义的Flask/Django服务。 2. 构建知识库:将文档处理成向量存储,可能需要BERT等模型生成嵌入。 3. 开发MCP逻辑:处理用户查询,调用检索,整合结果到生成模型。 4. 集成到Cursor:通过插件或外部工具调用本地服务,实现开发环境中的RAG应用。 可能遗漏的点是具体如何将Cursor集成进来,是否需要其特定的功能或接口,可能需要查阅Cursor的文档,看是否支持扩展开发。另外,确保整个流程的中文支持,包括检索生成阶段。</think>以下介绍结合Cursor开发、支持本地大模型和MCP的RAG架构实现思路,分三个层级展开: $$ \text{RAG架构} = \text{检索系统} \oplus \text{生成系统} \oplus \text{控制平台} $$ --- ### 一、基础组件构成 1. **本地大模型层** - 选用**Llama2-13B**、**ChatGLM3**等支持本地部署的中文优化模型 - 硬件要求:至少24GB显存(可通过量化降低需求) - 关键技术:LoRA微调适配垂直领域任务 2. **检索增强层** - 向量数据库:FAISS/Pinecone(本地部署版) - 文档处理流水线: $$ \text{PDF/Word} \Rightarrow \text{Unstructured文本提取} \Rightarrow \text{BERT向量化} \Rightarrow \text{索引构建} $$ 3. **MCP控制层** - 实现功能路由、流量控制、缓存管理 - 关键接口: ```python class MCPController: def route_query(self, query: str) -> Dict: # 执行检索决策、模型调度 ``` --- ### 二、Cursor开发集成方案 1. **插件扩展开发** - 通过Cursor的**插件API**接入本地模型服务 - 典型交互流程: ``` 用户输入问题 → Cursor插件调用本地RAG服务 → 返回增强后的生成结果 ``` 2. **调试工具链配置** - 本地模型热加载:修改模型参数无需重启服务 - 检索过程可视化:展示top-k检索段落与相关性分数 3. **Prompt工程支持** - 内置模板库管理: ```markdown 【知识增强模板】 {检索结果} 基于以上背景,请用中文回答:{用户问题} ``` --- ### 三、性能优化策略 1. **混合检索模式** $$ \text{相似度检索} + \text{关键词检索} \Rightarrow \text{Ensemble Ranking} $$ 2. **分层缓存机制** - 一级缓存:高频问答对(LRU策略) - 二级缓存:语义相似问题聚类 3. **量化部署方案** - 模型权重:8-bit量化 + 梯度检查点 - 检索加速:PCA降维(768d → 128d) --- ### 四、典型应用场景 1. **代码知识助手** - 检索公司代码库 + 生成API使用示例 2. **技术文档分析** - 跨文档关联分析(需求文档 ↔ 设计文档) 3. **安全合规审查** - 实时检索法规库 + 生成合规建议 --- **实施建议**:先从单文档QA测试开始,逐步扩展至万级文档库。关注中文分词质量对检索的影响,建议使用**jieba**+领域词典优化分词效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值