探索检索增强生成(RAG)技术的无限可能:Vector+KG RAG、Self-RAG、多向量检索器多模态RAG集成

本文探讨了检索增强生成(RAG)技术的优化,包括Vector+KG RAG、Self-RAG和多向量检索器多模态RAG集成。RAG通过向量数据库和知识图谱结合增强生成,Self-RAG则根据查询动态检索相关上下文,提高生成质量。文章详细介绍了Self-RAG的工作流程、模型训练和推理过程,以及多模态RAG如何处理文本、表格和图片信息。
摘要由CSDN通过智能技术生成

探索检索增强生成(RAG)技术的无限可能:Vector+KG RAG、Self-RAG、多向量检索器多模态RAG集成

由于 RAG 的整体思路是首先将文本切分成不同的组块,然后存储到向量数据库中。在实际使用时,将计算用户的问题和文本块的相似度,并召回 top k 的组块,然后将 top k 的组块和问题拼接生成提示词输入到大模型中,最终得到回答。

优化点:

  • 优化文本切分的方式,组块大小和重叠的大小都是可以调节的参数
  • 多组块召回,可以在检索的时候使用较小长度的组块,然后输入到大模型时使用较大长度的组块获得更充分的上下文信息
  • 优化向量模型,使用高性能的向量模型,比如目前我们在使用的 bge,有能力的去微调向量模型能达到更好的效果
  • 增加重排序,向量模型召回一个较大数量的组块,然后使用重排序的模型去筛选一个较小数量的组块去生成提示词
  • 提示词优化,增加相关的提示词约束可以让大模型输出的结果更稳定,质量更高

RAG 优化分为两个方向:RAG 基础功能优化、RAG 架构优化。我们分别展开讨论。

1.RAG 基础功能优化

对 RAG 的基础功能优化,

  • 15
    点赞
  • 62
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值