LLM - 大模型 LoRA 微调的超参数与参数量 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/144113087

免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。


LoRA

LoRA(Low-Rank Adaptation, 低秩适配),微调预训练大模型的技术,即参数有效微调(Parameter-Efficient Fine-tuning, PEFT),在不改变原始权重的基础上,引入可训练的 低秩分解矩阵 调整模型参数,适应特定任务或领域。冻结预训练模型的参数,在 Transfomer 的每一层中,加入可训练的旁路矩阵(低秩可分离矩阵),将旁路输出与初始路径输出相加࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值