计算机视觉
文章平均质量分 83
Kevein111
a phd candidates in cs
展开
-
SIFT中的尺度空间和传统图像金字塔
转载自:SIFT中的尺度空间和传统图像金字塔 | 丕子 关于尺度空间以及图像的亚采样和平滑的比较很有启发性。链接如下:http://www.zhizhihu.com/html/y2010/2146.html转载 2014-07-18 20:53:31 · 1310 阅读 · 0 评论 -
LSTM和RNN 入门tutorials
LSTM RNN 入门 资料原创 2015-09-20 11:00:25 · 3451 阅读 · 0 评论 -
Struck Structured Output Tracking with Kernels阅读笔记
今天讲讲struck,最近感觉tracking的model进步是日新月异,比如大牛Dr. Chao Ma,最近在他的homepagehttps://sites.google.com/site/chaoma99/上传了他的2014年CVPR的code:long term correlation filter的codes。理论清晰,效果超好,这才是top research.原创 2015-12-08 21:56:27 · 4974 阅读 · 3 评论 -
Ubuntu 下matlab与 opencv混合编程
一直想学习mex接口函数,可惜之前没有用到过,于是没特别在意。这次因为跑别人的code,感觉还是搞出一个matlab wrapper,这样会比较方便。但是这个涉及到mex混编以及调用opencv的问题。于是乎,里面涉及到很很多多的问题,包括配置的问题,编译的问题,参数传递的问题,等等。但是,一旦你能掌握他,你就相当于结合了MATLAB的优点(容易上手,快速编程,不需要考虑定义变量)和C的优点(原创 2015-12-10 20:38:25 · 1817 阅读 · 1 评论 -
Opencv3.0.0 vs2012 win7配置
参考blog:http://demo.netfoucs.com/u013647382/article/details/42557479完全按照这个博客就好了安装经验1:需要说明的是无论是64位的操作系统还是32 位的操作系统,在进行环境配置添加opencv的路径和在vs2012中添加路径的时候都是x86下面而不是x64下面,因为opencv编译都是32位的。安装经验2:在vs2原创 2015-07-21 22:12:57 · 1197 阅读 · 0 评论 -
Ubuntu下运行Faster-Rcnn
转自:http://blog.csdn.net/qq_30040223/article/details/48491997Faster-Rcnn 介绍前几天Shaoqing Ren放出了Faster-Rcnn的代码,可以在他的Github上下载得到,上面也有详细的配置说明。我下载下来,在自己的虚拟机上测试了一下,速度上确实比之前的Fast-Rcnn有提高。SPP-Net,Fa转载 2015-11-25 10:50:32 · 2150 阅读 · 0 评论 -
Visual Tracker Benchmark 教程
在visual tracking中,visual tracker benchmark 是为了给不同的算法提供一个基准。这个基准从2013年提出,应该是目前最火的benchmark了。原始论文链接:Online Object Tracking: A Benchmark (CVPR 2013)http://faculty.ucmerced.edu/mhyang/papers/cvpr13_原创 2015-07-25 14:56:34 · 13486 阅读 · 52 评论 -
long term recurrent convolutional networks for visual recognition and description
这篇属于很早就探索cnn+rnn解决high-level computer vision task的文章Abstract基于深度卷积网络的模型已经在最近的图像解释任务中成为主流,在这里我们研究了是否recurrent model能够有效的处理涉及到sequences以及视觉的各种任务。我们开发了一个新的recurrent convolutional 结构来实现大规模的学习任务,而且这个原创 2016-04-06 16:08:57 · 4152 阅读 · 0 评论 -
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking 笔记
这篇paper利用DL做 visual tracking,目前在Object Tracking Benchmark以及VOT2014上实现了state of the art。文章的方法比较直观:作者称之为Multi_domain network。本质上,作者首先拿第一帧大量的正负样本来训练前面这个conv1-conv2-conv3-fc4-fc5网络,而对于fc6,针原创 2015-11-06 21:13:53 · 3967 阅读 · 2 评论 -
cuda 6.5升级到cuda7.5方法
鉴于很多人刚开始接触caffe,用的都是cuda6.5,而现在nvidia已经出了cuda7.5,同时最新的cudnn已经不支持cuda6.5. 所以有必要upgrate一下cuda。方法如下:首先删除之前安装的cuda已经对应的nvdia驱动:参考这个link:http://www.th7.cn/system/lin/201601/149143.shtmlstep1:原创 2016-04-19 00:42:59 · 5326 阅读 · 0 评论 -
Visual Tracking with Fully Convolutional Networks 笔记
简单介绍一下背景,这篇文章是大连理工的卢湖川教授http://202.118.75.4/lu/publications.html的学生Lijun Wang在港中文与Xiaogang Wang团队合作的ICCV2015的文章。笔者7月份在CUHK听报告的时候有幸提前看到相关的展示,感觉结果很惊人。原创 2015-10-06 10:12:58 · 7444 阅读 · 1 评论 -
Visual Tracking with Online Multiple Instance Learning读书笔记
有是一篇关于tracking中基于tracking-by-detection框架的文章,而且关注的是好的正样本的问题。当然之前那篇里面的struck也是关注这个问题。作者首先发现,利用当前帧的state获得的正负样本很容易混淆分类器本身。因为tracker本身稍微的误差可能将训练样本的label标错,那么训练出来的分类器也就不好了,于是对下一帧的预测很可能出问题。于是我们还是得获得好的正负样本来u原创 2015-12-23 23:00:25 · 2678 阅读 · 0 评论 -
Exploiting the Circulant Structure of Tracking-by-detection with Kernels 笔记
这是一篇ECCV2014年的paper,在这篇paper中作者提出了kernelized correlation filter,并将其应用到了tracking中,从而有了15年PAMIN的那篇文章,我再之前博客中也记录过http://blog.csdn.net/carrierlxksuper/article/details/46461245这篇文章的公式推导比较复杂,感兴趣的可以去看看原创 2015-12-16 17:00:23 · 3591 阅读 · 0 评论 -
RCNN 安装编译与MATLAB2014下问题解决
RCNN 是利用DL做目标检测的一个程序,现在有更快的faster-RCNN。github地址:https://github.com/rbgirshick/rcnn下面讲讲这个的编译:其实RCNN最难安装部分就是caffe部分。所以我假设之前的CUDA,以及必需的矩阵计算库, 首先是必须要在ubuntu matlab 2012下编译(a,b都行),之前我的电脑一直是MA原创 2015-11-02 21:03:46 · 3117 阅读 · 0 评论 -
Robust Visual Tracking via Convolutional Networks 阅读笔记
这篇作者是:Prof. Kaihua Zhang, Qingshan Liu, Yi Wu, and Ming-Hsuan Yang,全是大牛。前几天看到他们把新版本的CNT放出来了,于是抓紧时间阅读了一下,整体思想与上一篇文章差别不大,下面详细介绍一下这篇文章。原创 2015-09-05 17:07:22 · 3588 阅读 · 1 评论 -
Gabor wavelet and 实现方法
参考博客:http://blog.csdn.net/jinshengtao/article/details/17797641http://matlabserver.cs.rug.nl/edgedetectionweb/web/edgedetection_params.htmlGabor的实现,可以参考这个:提供了各种版本的实现方法:http://blog.csdn.net/watkin原创 2015-08-01 23:20:20 · 3669 阅读 · 0 评论 -
ubuntu 下 cuda 6.5 安装以及caffe 配置
主要参考blog:http://www.cnblogs.com/platero/p/3993877.html#http://blog.csdn.net/ccemmawatson/article/details/42004105本blog主要包含两个部分,一部分是NVIDIA显卡下的cuda 6.5的安装,第二部分是caffe的安装,环境是Ubuntu 14.04Part原创 2015-01-06 16:23:34 · 3191 阅读 · 0 评论 -
Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明
博客原址:http://www.cnblogs.com/platero/p/3993877.html 。 PS:感谢作者普兒的技术传送门相应的评论列表也需要看一下,很多安装中碰到的问题都在里面有回答。同时我会在下一个blog中贴出我自己安装的流程,有一些不太一样的地方。1. 安装build-essentials安装开发所需要的一些基本包sudo apt-get转载 2015-01-06 16:07:44 · 974 阅读 · 0 评论 -
unsupervised learning 自己的一点认识
今天读了今年cvpr上TAYLOR和Ranzato分别关于unsupervised learing原创 2014-11-25 16:38:46 · 1709 阅读 · 0 评论 -
Correlation filter and convolution filter
昨天,在valse群上听 Dr Naiyan Wang将CNN做tracking,在结尾部分,作者提出可以用correlation filter代替convolution filter。我很curious 这个correlation filter,发现PAMI已经有paper了。下面是几个比较有用的link:http://home.isr.uc.pt/~henriques/circulant/原创 2015-03-26 11:18:21 · 1745 阅读 · 0 评论 -
Hey, Ipython
最近在Ubuntu下玩caffe的filter visualization,用的是Ipython+notebook参考的blog: 1) http://mindonmind.github.io/2013/02/08/ipython-notebook-interactive-computing-new-era/ 2) caffe 官网S原创 2015-04-27 20:19:11 · 637 阅读 · 0 评论 -
Representive learning: A review and New respective
这是一篇发表于2014年的文章,作者分析了为什么深度学习能够具有好的表达能力,从而能够在图像分类,目标识别,图像分割和目标追踪等方面获得state-of-the-art 。作者分别从表达学习(Representatin learning)的先验,smoothness和维数灾难,分布式表达,深度和抽象以及disentangling Factors of Variation 五个方面进行了分析。原创 2015-05-14 17:04:51 · 1055 阅读 · 0 评论 -
Correlation Filter in Visual Tracking系列一
最近在看visual tracking部分的内容,看到别人总结的很不错,做一次搬运工:链接: http://www.cnblogs.com/hanhuili/p/4266990.htmlVisual Object Tracking using Adaptive Correlation Filters 一文发表于2010的CVPR上,是笔者所知的第一篇将correlation filte转载 2015-06-04 17:07:30 · 2572 阅读 · 0 评论 -
Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Lear
原文再续,书接一上回。话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良。这次要谈的论文是我们国内Zhang Kaihua团队在ECCV 2014上发表的STC tracker:Fast Visual Tracking via Dense Spatio-Temporal Context Learning。转载 2015-06-04 19:45:33 · 1987 阅读 · 0 评论 -
visual tracking的scale 问题
最近在研究结合尺度空间理论解决visual tracking中尺度估计问题。先贴出尺度空间的一个blog:点击打开链接然后是几篇基于mean_shift 下的尺度的方法,虽然现在mean_shift已经没有卵用。Paper 1:Mean-shift Blob Tracking through Scale Space ,CVPR,2003,应该算是这个方向很早的paper了,最近原创 2015-06-27 21:50:10 · 1542 阅读 · 0 评论 -
Mean-shift Blob Tracking through Scale Space 阅读笔记
这篇文章主要解决的是visual tracking中mean-shift方法无法估计尺度变化的问题,作者采用Lindeberg的尺度空间理论 来解决这个问题。其原理就是:基于可导的尺度空间滤波器的局部最大值来进行尺度选择。基于appearance 的tracking中,像素值w(a)表示的是改点属于object的概率,一般foreground blob具有高的权重,而background原创 2015-07-01 23:01:43 · 1487 阅读 · 0 评论 -
High-speed Tracking with Kernelized Correlation filters笔记
最近在阅读tracking的相关文章,作为2015年的最新出的KCF ,引起我的关注,作者的相关paper以及code在此:http://home.isr.uc.pt/~henriques/circulant/刚开始接触tracking,下面分析的可能有纰漏。在这篇文章中作者提出了一种比correlation filter更加强大的tracking方法。作者的核心思想就是:采用判别式的trac原创 2015-06-11 21:50:42 · 20919 阅读 · 7 评论 -
Coupled Generative Adversarial Networks 阅读笔记
首先安利一个blog,https://www.cnblogs.com/wangxiaocvpr/这个blog写的内容涵盖计算机视觉与深度学习的很多方面,作者update的很快。这篇文章(NIPS2016)是基于Generative Adversarial Networks (GAN)而来的,GAN有两个部分,第一部分是生成器Generator,第二部分是判别器Discriminator。G原创 2017-03-05 23:53:35 · 8848 阅读 · 4 评论