RCNN 安装编译与MATLAB2014下问题解决

RCNN 是利用DL做目标检测的一个程序,现在有更快的faster-RCNN。

github地址:https://github.com/rbgirshick/rcnn

caffe的安装:

其实RCNN最难安装部分就是caffe部分。所以我假设之前的CUDA,以及必需的矩阵计算库之类的都安装好了,如果没有,参考:

http://www.cnblogs.com/platero/p/3993877.html

以及

http://blog.csdn.net/altenli/article/details/44199539

下面说RCNN的编译:

首先是必须要在ubuntu matlab 2012下编译(a,b都行),之前我的电脑一直是MATLAB2014,发现编译完成之后,运行一直报错,各种bug,根本的原因就是MATLAB版本不兼容。(这里补充一下,可以在MATLAB2014下运行,感谢TongXu大神[https://github.com/tt-leader]的提醒,具体的方法在最后面附录)


第二点就是:关于caffe的版本,作者在readme中提供的caffe-v0.999是有问题的,推荐另外一个也是v0.999版本但是,修复bug的版本:https://github.com/DeercoderResearch/caffe-0.999

第三点就是caffe编译的问题了。解压从第二步下载的文件,首先需要修改里面的makefile.config中MATLAB的路径(复制一个makefile.config.example),因为我之前安装的是matlab 2014,所以我要修改mak

我在使用caffe进行训练的时候在未耗尽显存的情况下显示显存溢出

02-27

报错信息: ``` I0227 13:57:10.174791 17889 solver.cpp:365] Model Synchronization Communication time 0.071111 second I0227 13:57:10.275547 17889 solver.cpp:365] Model Synchronization Communication time 0.0634275 second I0227 13:57:10.275617 17889 solver.cpp:456] Iteration 0, Testing net (#0) I0227 13:57:11.660853 17889 cudnn_conv_layer.cpp:186] Optimized cudnn conv I0227 14:18:10.495625 17889 solver.cpp:513] Test net output #0: accuracy_top1 = 0.857785 I0227 14:18:10.495926 17889 solver.cpp:513] Test net output #1: accuracy_top1_motion = 0.0103093 I0227 14:18:10.495939 17889 solver.cpp:513] Test net output #2: accuracy_top1_motion_14 = 0.0103093 I0227 14:18:10.495947 17889 solver.cpp:513] Test net output #3: accuracy_top1_motion_28 = 0.010838 I0227 14:18:10.495954 17889 solver.cpp:513] Test net output #4: accuracy_top1_motion_fusion = 0.856992 I0227 14:18:10.495965 17889 solver.cpp:513] Test net output #5: loss = 4.6683 (* 1 = 4.6683 loss) I0227 14:18:10.495975 17889 solver.cpp:513] Test net output #6: loss_14 = 4.6196 (* 1 = 4.6196 loss) I0227 14:18:10.495985 17889 solver.cpp:513] Test net output #7: loss_28 = 4.62227 (* 1 = 4.62227 loss) F0227 14:18:11.252009 17892 syncedmem.cpp:51] Check failed: error == cudaSuccess (2 vs. 0) out of memory *** Check failure stack trace: *** F0227 14:18:11.252311 17889 syncedmem.cpp:51] Check failed: error == cudaSuccess (2 vs. 0) out of memory *** Check failure stack trace: *** @ 0x7fd2deed9dbd google::LogMessage::Fail() @ 0x7f70d80dddbd google::LogMessage::Fail() F0227 14:18:11.254006 17891 syncedmem.cpp:51] Check failed: error == cudaSuccess (2 vs. 0) out of memory *** Check failure stack trace: *** @ 0x7fd2deedbcf8 google::LogMessage::SendToLog() @ 0x7f70d80dfcf8 google::LogMessage::SendToLog() F0227 14:18:11.254802 17890 syncedmem.cpp:51] Check failed: error == cudaSuccess (2 vs. 0) out of memory *** Check failure stack trace: *** @ 0x7f766019fdbd google::LogMessage::Fail() @ 0x7fd2deed9953 google::LogMessage::Flush() @ 0x7f70d80dd953 google::LogMessage::Flush() @ 0x7f714c5cedbd google::LogMessage::Fail() @ 0x7f76601a1cf8 google::LogMessage::SendToLog() @ 0x7fd2deedc62e google::LogMessageFatal::~LogMessageFatal() @ 0x7f70d80e062e google::LogMessageFatal::~LogMessageFatal() @ 0x7f714c5d0cf8 google::LogMessage::SendToLog() @ 0x7f766019f953 google::LogMessage::Flush() @ 0x7fd2df2aaa6a caffe::SyncedMemory::mutable_gpu_data() @ 0x7f70d84aea6a caffe::SyncedMemory::mutable_gpu_data() @ 0x7f714c5ce953 google::LogMessage::Flush() @ 0x7f76601a262e google::LogMessageFatal::~LogMessageFatal() @ 0x7fd2df3cc9f2 caffe::Blob<>::mutable_gpu_data() @ 0x7f70d85d09f2 caffe::Blob<>::mutable_gpu_data() @ 0x7f714c5d162e google::LogMessageFatal::~LogMessageFatal() @ 0x7f7660570a6a caffe::SyncedMemory::mutable_gpu_data() @ 0x7fd2df423c84 caffe::BNLayer<>::Backward_gpu() @ 0x7f70d8627c84 caffe::BNLayer<>::Backward_gpu() @ 0x7f714c99fa6a caffe::SyncedMemory::mutable_gpu_data() @ 0x7f76606929f2 caffe::Blob<>::mutable_gpu_data() @ 0x7fd2df3f2905 caffe::CuDNNBNLayer<>::Backward_gpu() @ 0x7f70d85f6905 caffe::CuDNNBNLayer<>::Backward_gpu() @ 0x7f714cac19f2 caffe::Blob<>::mutable_gpu_data() @ 0x7f76606e9c84 caffe::BNLayer<>::Backward_gpu() @ 0x7fd2df236ad6 caffe::Net<>::BackwardFromTo() @ 0x7f70d843aad6 caffe::Net<>::BackwardFromTo() @ 0x7f714cb18c84 caffe::BNLayer<>::Backward_gpu() @ 0x7f76606b8905 caffe::CuDNNBNLayer<>::Backward_gpu() @ 0x7fd2df236d71 caffe::Net<>::Backward() @ 0x7f70d843ad71 caffe::Net<>::Backward() @ 0x7f714cae7905 caffe::CuDNNBNLayer<>::Backward_gpu() @ 0x7f76604fcad6 caffe::Net<>::BackwardFromTo() @ 0x7fd2df3c7bdf caffe::Solver<>::Step() @ 0x7f70d85cbbdf caffe::Solver<>::Step() @ 0x7f714c92bad6 caffe::Net<>::BackwardFromTo() @ 0x7f76604fcd71 caffe::Net<>::Backward() @ 0x7fd2df3c8408 caffe::Solver<>::Solve() @ 0x408e76 train() @ 0x407386 main @ 0x7f70d85cc408 caffe::Solver<>::Solve() @ 0x408e76 train() @ 0x407386 main @ 0x7f714c92bd71 caffe::Net<>::Backward() @ 0x7f766068dbdf caffe::Solver<>::Step() @ 0x7fd2de10cf45 __libc_start_main @ 0x40793d (unknown) @ 0x7f70d7310f45 __libc_start_main @ 0x40793d (unknown) @ 0x7f714cabcbdf caffe::Solver<>::Step() @ 0x7f766068e408 caffe::Solver<>::Solve() @ 0x408e76 train() @ 0x407386 main @ 0x7f714cabd408 caffe::Solver<>::Solve() @ 0x408e76 train() @ 0x407386 main @ 0x7f765f3d2f45 __libc_start_main @ 0x40793d (unknown) @ 0x7f714b801f45 __libc_start_main @ 0x40793d (unknown) -------------------------------------------------------------------------- mpirun noticed that process rank 0 with PID 0 on node s2 exited on signal 6 (Aborted). -------------------------------------------------------------------------- ``` 资源使用情况: ![图片说明](https://img-ask.csdn.net/upload/201902/27/1551248841_525579.png) 问答

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览