29、GUILD:大规模数据集可用图像生成器

GUILD:大规模数据集可用图像生成器

在计算机视觉领域,大型图像数据集的重要性不言而喻。像Microsoft COCO、Open Images和ImageNet等数据集,在近年来的各种计算机视觉算法挑战中发挥了关键作用,推动了技术的发展。但是,创建包含数千甚至数百万个带标签图像的数据集是一项极为耗时的工作。例如,生成MSCOCO数据集就需要超过7万小时的人工劳动。

合成图像的优势

对于某些任务,如训练人工神经网络,使用合成图像进行训练比使用真实图像具有诸多优势。合成图像的生成速度远远快于手动拍摄场景或感兴趣对象的照片。如果从在线服务自动收集图像,仍需验证每张图像的质量。而且,合成图像可以自由配置数据集的属性,能够根据需求设置特定的环境条件来生成图像,这对于真实照片来说往往很难实现,尤其是在环境条件罕见或难以观察的情况下。此外,合成图像的标签可以自动生成,而真实图像则需要手动标记,不仅速度慢,还容易出错且不够精确。

GUILD工具的提出

为了研究使用生成的训练数据检测真实图像中对象的影响,研究人员提出了GUILD工具,它能够在不同环境中生成各种类别的图像。其主要贡献包括:
1. 实现了GUILD工具,该工具能够生成逼真且自动标记的图像。
2. 比较了生成的数据集和真实世界的数据集,展示了它们在训练神经网络方面的相似性能。

相关工作
手动收集数据集

创建大规模数据集非常耗时。即使通过像Flickr这样的图像平台自动收集图像,对图像进行分类或创建细粒度标签(如边界框、掩码等)仍需要人工操作。例如,创建包含约20万张带标签图像的MSCOCO数据集,需要超过7万小时的人工劳动。

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值