GUILD:大规模数据集可用图像生成器
在计算机视觉领域,大型图像数据集的重要性不言而喻。像Microsoft COCO、Open Images和ImageNet等数据集,在近年来的各种计算机视觉算法挑战中发挥了关键作用,推动了技术的发展。但是,创建包含数千甚至数百万个带标签图像的数据集是一项极为耗时的工作。例如,生成MSCOCO数据集就需要超过7万小时的人工劳动。
合成图像的优势
对于某些任务,如训练人工神经网络,使用合成图像进行训练比使用真实图像具有诸多优势。合成图像的生成速度远远快于手动拍摄场景或感兴趣对象的照片。如果从在线服务自动收集图像,仍需验证每张图像的质量。而且,合成图像可以自由配置数据集的属性,能够根据需求设置特定的环境条件来生成图像,这对于真实照片来说往往很难实现,尤其是在环境条件罕见或难以观察的情况下。此外,合成图像的标签可以自动生成,而真实图像则需要手动标记,不仅速度慢,还容易出错且不够精确。
GUILD工具的提出
为了研究使用生成的训练数据检测真实图像中对象的影响,研究人员提出了GUILD工具,它能够在不同环境中生成各种类别的图像。其主要贡献包括:
1. 实现了GUILD工具,该工具能够生成逼真且自动标记的图像。
2. 比较了生成的数据集和真实世界的数据集,展示了它们在训练神经网络方面的相似性能。
相关工作
手动收集数据集
创建大规模数据集非常耗时。即使通过像Flickr这样的图像平台自动收集图像,对图像进行分类或创建细粒度标签(如边界框、掩码等)仍需要人工操作。例如,创建包含约20万张带标签图像的MSCOCO数据集,需要超过7万小时的人工劳动。
超级会员免费看
订阅专栏 解锁全文
1135

被折叠的 条评论
为什么被折叠?



