Coursera - Algorithm (Stanford) - 课程笔记 - Week 8

Hash Tables

  • 目标:维护一组可能发生演变的事物集合
  • 插入:增加一个新的记录
  • 删除:删除一个既有的指定记录
  • 查找:检查一个指定的记录
  • 关键在于对于键的处理,但不维护元素的相对顺序
  • 所有的操作的时间复杂度为 O ( 1 ) O(1) O(1)
  • 注意:
    • 哈希表很容易实现地很糟糕,从而无法保证常数时间操作
    • 不存在“最糟糕”情形——病态数据也能保证适当的时间复杂度
  • 应用:去重
    • 输入:一个输入对象流
    • 目标:去除输入的重复值
    • 解决方案:输入——检查——存在即忽略,缺席即保留
  • 应用:2-SUM问题
    • 输入:一组 n n n个整数,目标和 t t t
    • 目标:是否存在两个数, x + y = t x + y = t x+y=t
    • 解决方案1:对数组排序,对于每一个 x x x,使用二分查找寻找是否存在 t − x t-x tx
      • 时间复杂度 O ( n log ⁡ n ) O(n \log n) O(nlogn)
    • 解决方案2:将数据插入哈希表,对每一个 x x x,检查哈希表中是否存在 t − x t - x tx
      • 时间复杂度 O ( n ) O(n) O(n)
  • 对于包含所有目标数据的集合 U U U,希望能够维护一个动态的集合 S ⊆ U S \subseteq U SU,后者的尺寸更加合理,更易实现
    • 基于 U U U的数组实现: O ( 1 ) O(1) O(1)时间,但是已经 O ( ∣ U ∣ ) O(|U|) O(U)空间
    • 基于 S S S的链表实现: O ( ∣ S ∣ ) O(|S|) O(S)空间,但是已经 O ( ∣ S ∣ ) O(|S|) O(S)时间
    • 哈希表期望: O ( 1 ) O(1) O(1)的时间, O ( ∣ S ∣ ) O(|S|) O(S)的空间
    • 实现
      • 设置 n ≈ ∣ S ∣ n \approx |S| nS个桶(问题简化,不考虑动态分配空间的情形)
      • 选择一个合适的哈希函数,将 U U U映射到 [ 0 , n − 1 ] [0, n - 1] [0,n1]
      • 将标签输入哈希函数,得到的键值用于确定存储位置
      • 问题:碰撞???
  • 生日悖论:当整个哈希表还没有装入很多元素时,就会开始出现碰撞
  • 碰撞:对于一个哈希函数 h h h,对于两个不同元素 x , y ∈ U x, y \in U x,yU,有 h ( x ) = h ( y ) h(x) = h(y) h(x)=h(y)
    • 分开成链
      • 在碰撞时,每个桶维护一个链表,查找是沿着链表匹配
      • 插入时,时间复杂度 O ( 1 ) O(1) O(1);查找或删除则需要 O ( list length ) O(\text{list length}) O(list length)时间
      • 列表的长度受哈希函数影响,对 n n n个桶插入 m m m个数据,在最理想情况下长度为 m / n m / n m/n(均匀分布),最糟糕情况下 m m m(全都堆一块)
      • 这种实现下,性能完全由哈希函数决定
    • 开放地址
      • 向后探查,直到找到一个空位置(线性探查)
      • 准备两个哈希函数,第一个哈希函数对应的位置不为空时,后一个作为步长不断向后探查(双重哈希)
      • 同样,性能也完全由哈希函数决定
    • 分开成链增加对空间的需求,开放地址需要对删除情形额外处理
  • 一个好的哈希函数
    • 在哈希表中均匀摊开数据——随机方法?插入就没法查了……
    • 要么易于存储键值,要么能够常数时间内得到键值
  • 快速比较麻烦的哈希函数
    • 哈希函数(由输入串产生一个大数字) + 压缩函数(数字的压缩表示)
    • 桶数目的选择(压缩效果)
      • 一个质数
      • 尽量不要接近2的幂
      • 也不要接近10的幂

Universal Hashing

  • Load:一个哈希表的平均装载量(装载总量 / 桶总数)

    • 只有当load为常数时,操作的常数时间才能得到保证
    • 对于开放地址,我们希望load尽可能小于1(始终不是很满)
    • 需要控制好load
  • 要点

    • 好的性能,需要控制load
    • 好的性能,需要好的哈希函数
  • 任何一个哈希函数,都存在一个病态数据集,使其无法保证均匀地摊开数据

    • 加密哈希函数(SHA-2),发现病态数据集变得不可行
  • 使用随机化方法,一组哈希函数,每次随机选一个,随机化能够尽可能均匀地散布数据

  • 通用哈希函数

    • H \mathcal{H} H为一组哈希函数,从 U U U映射到 n n n个桶
    • H \mathcal{H} H是通用的,当且仅当 P r h ∈ H [ h ( x ) = h ( y ) ,   x ≠ y ] ≤ 1 n Pr_{h \in \mathcal{H}}[h(x) = h(y),\ x \neq y] \le \frac 1n PrhH[h(x)=h(y), x=y]n1
    • 出现碰撞的概率足够小(不超过均匀分布概率)
    • 1 n \frac 1n n1的函数保证将 k k k映射到 i i i?如果有 n n n个全映射哈希函数,能够保证这组哈希函数是通用的
  • 通用哈希函数能够保证成链实现的哈希表(随机选择、桶数相比于数据集大小可观)的操作时间在常数(因为随机化使得每一个同对应链表的长度期望为常数)

  • 对于开放地址实现,假设所有 n ! n! n!中探查等概率(实际基本不可能),期望插入时间为 1 1 − α \frac 1{1 - \alpha} 1α1

    • 在线性探查实现中,理想假设已经失效,假设探查是独立的均匀分布,插入时间基本维持 1 ( 1 − α ) 2 \frac 1{(1 - \alpha)^2} (1α)21
    • 性能受到探查策略的极大影响

Bloom Filter

  • 一个哈希表的变种,允许错误发生
  • 特点:快速的插入和查找
  • 优势
    • 更小的空间需求(无论何种实现)
  • 劣势
    • 并不存储对应的对象
    • 不能进行删除
    • 较小的假阳性概率
  • 应用
    • 早期的拼写检查器
    • 禁止密码列表
    • 网络路由器(小内存,超快读写)
  • 组成:数组 + 若干哈希函数
    • 数组的每一项都是一个二值位( n n n个bit)
    • 插入对象集合为 S S S,那么 n / ∣ S ∣ n / |S| n/S即为每个对象占用的位数,可以显著降低存储占用
    • k k k个哈希函数,决定某个对象对应的位将被激活
  • 插入:对输入 x x x,将 A [ h i ( x ) ] A[h_i(x)] A[hi(x)]置为1(无论是否已经置为1)
  • 查找:对目标 x x x,如果所有 A [ h i ( x ) ] A[h_i(x)] A[hi(x)]均为1,则哈希表中存在该目标——存在假阳性的可能
  • 能否在较小的单位对象位占用的情况下保证较小的假阳性率?——权衡
    • 空间越大,出错率越低
    • k k k的选择?在给定 b = n / ∣ S ∣ b = n / |S| b=n/S的情况下,出现假阳性的误差率 ϵ \epsilon ϵ可以被 k k k最小化
    • k ≈ ( ln ⁡ 2 ) ⋅ b k \approx (\ln 2) \cdot b k(ln2)b
    • ϵ ≈ ( 1 2 ) ( l n 2 ) ⋅ b \epsilon \approx (\frac12)^{(ln 2) \cdot b} ϵ(21)(ln2)b
### 回答1: Coursera-ml-andrewng-notes-master.zip是一个包含Andrew Ng的机器学习课程笔记和代码的压缩包。这门课程是由斯坦福大学提供的计算机科学和人工智能实验室(CSAIL)的教授Andrew Ng教授开设的,旨在通过深入浅出的方式介绍机器学习的基础概念,包括监督学习、无监督学习、逻辑回归、神经网络等等。 这个压缩包中的笔记和代码可以帮助机器学习初学者更好地理解和应用所学的知识。笔记中包含了课程中涉及到的各种公式、算法和概念的详细解释,同时也包括了编程作业的指导和解答。而代码部分包含了课程中使用的MATLAB代码,以及Python代码的实现。 这个压缩包对机器学习爱好者和学生来说是一个非常有用的资源,能够让他们深入了解机器学习的基础,并掌握如何运用这些知识去解决实际问题。此外,这个压缩包还可以作为教师和讲师的教学资源,帮助他们更好地传授机器学习的知识和技能。 ### 回答2: coursera-ml-andrewng-notes-master.zip 是一个 Coursera Machine Learning 课程笔记和教材的压缩包,由学生或者讲师编写。这个压缩包中包括了 Andrew Ng 教授在 Coursera 上发布的 Machine Learning 课程的全部讲义、练习题和答案等相关学习材料。 Machine Learning 课程是一个介绍机器学习的课程,它包括了许多重要的机器学习算法和理论,例如线性回归、神经网络、决策树、支持向量机等。这个课程的目标是让学生了解机器学习的方法,学习如何使用机器学习来解决实际问题,并最终构建自己的机器学习系统。 这个压缩包中包含的所有学习材料都是免费的,每个人都可以从 Coursera 的网站上免费获取。通过学习这个课程,你将学习到机器学习的基础知识和核心算法,掌握机器学习的实际应用技巧,以及学会如何处理不同种类的数据和问题。 总之,coursera-ml-andrewng-notes-master.zip 是一个非常有用的学习资源,它可以帮助人们更好地学习、理解和掌握机器学习的知识和技能。无论你是机器学习初学者还是资深的机器学习专家,它都将是一个重要的参考工具。 ### 回答3: coursera-ml-andrewng-notes-master.zip是一份具有高价值的文件,其中包含了Andrew Ng在Coursera上开授的机器学习课程笔记。这份课程笔记可以帮助学习者更好地理解掌握机器学习技术和方法,提高在机器学习领域的实践能力。通过这份文件,学习者可以学习到机器学习的算法、原理和应用,其中包括线性回归、逻辑回归、神经网络、支持向量机、聚类、降维等多个内容。同时,这份笔记还提供了很多代码实现和模板,学习者可以通过这些实例来理解、运用和进一步深入研究机器学习技术。 总的来说,coursera-ml-andrewng-notes-master.zip对于想要深入学习和掌握机器学习技术和方法的学习者来说是一份不可多得的资料,对于企业中从事机器学习相关工作的从业人员来说也是进行技能提升或者知识更新的重要资料。因此,对于机器学习领域的学习者和从业人员来说,学习并掌握coursera-ml-andrewng-notes-master.zip所提供的知识和技能是非常有价值的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值