音源分离|Music Source Separation in the Waveform Domain

一、文章摘要

        本文中,比较了两种时域结构。首先将最初为语音源分离而开发的卷积tasnet应用于音乐源分离任务。虽然ConvTasnet击败了许多现有的频域方法,但正如人类评估所显示的那样,它存在明显的artifacts。本文提出了一种新的时域模型Demucs,它具有U-Net结构和双向LSTM。

        在MusDB数据集上的实验表明,通过适当的数据增强,Demucs击败了所有现有的最先进的架构,包括convt - tasnet,平均为6.3 SDR,(在150首额外的训练歌曲中达到6.8 SDR,甚至超过了bass源的IRM oracle)。使用模型量化的最新发展,Demucs可以压缩到120MB而不会损失任何精度。我们还提供了人类的评估,表明Demucs在音频的自然度方面有很大的优势。然而,它存在一些泄露问题,特别是在人声和其他源之间。

二、本文方法 

2.1 Conv-Tasnet方法适配到音源分离任务

        原始的conv - tasnet架构[Luo和Mesgarani, 2018]由一个学习的前端组成,该前端在以8 kHz采样的输入单音混合波形和以1 kHz采样的128通道过完整表示之间来回转换,使用卷积作为编码器和转置卷积作为解码器,两者的核大小为16,步幅为8。通过残块堆叠构成的分离网络对高维表示进行屏蔽。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值