一、文章摘要
本文中,比较了两种时域结构。首先将最初为语音源分离而开发的卷积tasnet应用于音乐源分离任务。虽然ConvTasnet击败了许多现有的频域方法,但正如人类评估所显示的那样,它存在明显的artifacts。本文提出了一种新的时域模型Demucs,它具有U-Net结构和双向LSTM。
在MusDB数据集上的实验表明,通过适当的数据增强,Demucs击败了所有现有的最先进的架构,包括convt - tasnet,平均为6.3 SDR,(在150首额外的训练歌曲中达到6.8 SDR,甚至超过了bass源的IRM oracle)。使用模型量化的最新发展,Demucs可以压缩到120MB而不会损失任何精度。我们还提供了人类的评估,表明Demucs在音频的自然度方面有很大的优势。然而,它存在一些泄露问题,特别是在人声和其他源之间。
二、本文方法
2.1 Conv-Tasnet方法适配到音源分离任务
原始的conv - tasnet架构[Luo和Mesgarani, 2018]由一个学习的前端组成,该前端在以8 kHz采样的输入单音混合波形和以1 kHz采样的128通道过完整表示之间来回转换,使用卷积作为编码器和转置卷积作为解码器,两者的核大小为16,步幅为8。通过残块堆叠构成的分离网络对高维表示进行屏蔽。