cassiePython的专栏

编程小菜鸟新人报到

目标检测总结整理

目标检测总结整理 接触过图像处理的童鞋,对于目标检测一定不陌生吧。目标检测可一直是计算机视觉和机器学习领域的热点。这篇文章主要是依据小编自己的学习体会,对目标检测的发展历程进行了总结。最初,目标检测算法是基于传统手工特征的;大约在2013年,基于深度学习的目标检测开始逐渐火起来,基于传统的手工特...

2018-08-15 16:27:29

阅读数 2199

评论数 0

跨模态检索:带你领略图文检索的魅力

跨模态检索:带你领略图文检索的魅力 引子 作为经常“百度一下”的众多网民中的一份子,我们经常使用百度,输入要搜索的关键词,来检索要想的文本信息,此时是使用文本来检索文本;有时我们又会使用百度图片检索的功能,上传图片来寻找相似的图片,此时是以图来检索图;但我们也经常使用文本来搜索相应的图片,此时...

2018-08-15 16:19:06

阅读数 4880

评论数 1

通用人工智能:我们还有多远?

通用人工智能:我们还有多远? 通用人工智能的提出已经成为近年研究的一个热点。微软全球执行副总裁、人工智能研发的总掌舵人沈向洋说:“单独做一个东西之后,今天有非常强的AI系统,比如Alphago在围棋上战胜柯洁。这些都非常了不起,开发系统的时候做出些非常了不起的技术,但今天没有人去想通用人工智能到...

2018-08-15 16:08:00

阅读数 825

评论数 0

从佳佳到表情识别

从佳佳到表情识别 佳佳机器人是中科大陈小平老师团队的作品,号称 “中国第一美女机器人”。今天我们以佳佳为基础,来谈一谈表情的识别。 首先有请“佳佳”自我介绍: “大家好,我是佳佳,身高1.6米,体重90多斤,是个可爱的萌妹子。我可以进行人机对话,进行握手等行为,说话的时候口型也会匹配,还可以...

2018-08-15 16:03:06

阅读数 293

评论数 0

CVPR:Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 摘要 背景:图像到图像的迁移是计算机视觉中的一个很有意思的问题。目标是学习一个从输入图片到目标图片的映射,在训练中需要使用成对的训...

2018-07-06 16:24:53

阅读数 1782

评论数 8

CVPR: Bilateral Ordinal Relevance Multi-instance Regression for Facial Action Unit Intensity

Bilateral Ordinal Relevance Multi-instance Regression for Facial Action Unit Intensity Estimation Abstract 问题: 捕捉面部表情的微小表化很困难; AU强度的标注费时费力。 本...

2018-07-05 10:09:28

阅读数 194

评论数 0

CVPR:Facial Expression Intensity Estimation Using Ordinal Information

Facial Expression Intensity Estimation Using Ordinal Information Abstract 先前工作不足之处:大都关注于基本的表情的识别,只有少部分工作关注连续的表情强度的检测。原因是缺乏有标记的表情强度的数据。 本文工作:将表情的...

2018-07-02 15:23:07

阅读数 199

评论数 0

CVPR:Weakly-supervised Deep Convolutional Neural Network Learning for Facial Action Intensity Estima

Weakly-supervised Deep Convolutional Neural Network Learning for Facial Action Intensity Estimation Abstract AU强度检测在情感计算和人机交互中有着重要的作用,实际上以及有很多工作利...

2018-06-27 18:55:19

阅读数 240

评论数 0

确定性跳跃循环状态网络(CRJ)教程

确定性跳跃循环状态网络(CRJ)教程 本篇文章是上一篇文章回声状态网络(ESN)的延申,在阅读本文之前,希望您已经阅读了上一篇博文。 确定性跳跃循环状态网络(CRJ)是ESN的一个变种,如下图所示: 在CRJ中,中间节点通过单向的循环边和双向的跳跃边连接,所有的输入权重、循环权重、跳跃权...

2018-06-15 10:12:49

阅读数 495

评论数 0

人工智能:从搜索角度来谈谈优化

人工智能:从搜索角度来谈谈优化 我们先对优化问题进行描述,定义一个优化问题为: min f(x)s.t.  h(x)≤0min f(x)s.t. &...

2018-06-08 13:20:14

阅读数 444

评论数 0

Multi-channel Pose-aware Convolution Neural Networks for Multi-view Facial Expression Recognition

Multi-channel Pose-aware Convolution Neural Networks for Multi-view Facial Expression Recognition 大体浏览 我们知道识别多角度的面部表情是比较困难的,本文提出Multi-channel Pos...

2018-06-01 15:30:58

阅读数 228

评论数 0

回声状态网络(ESN)教程

回声状态网络(ESN)教程 基础概念 回声状态网络(Echo State Network)提出于2001年,曾经是研究的热点,但近年来随着RNN,LSTM与其它一些变种的网络的出现,现在研究比较少了,但是其在时间序列预测上还有着很不错的应用。传统的MLP网络的隐层是一层层的全连接的神经元,...

2018-05-21 11:03:03

阅读数 5409

评论数 34

基于BoF算法的图像分类

基于BoF算法的图像分类图像分类一直是计算机视觉中的一个重要问题,BoF(Bag of features)算法在图像分类中具有着重要的作用。本文旨在介绍BoF算法的基本原理和过程并且给出Python代码的实现:用于解决在Caltech 101数据库上的多分类问题。算法起源起源1:纹理识别纹理(te...

2018-04-28 09:27:51

阅读数 1290

评论数 1

Softmax函数及其导数

Softmax函数及其导数本文翻译自The Softmax function and its derivative基础概念Softmax函数的输入是N维的随机真值向量,输出是另一个N维的真值向量, 且值的范围是(0,1)(0,1),和为1.0。即映射:S(a)=RN→RNS(\textbf{a}...

2018-04-26 10:03:16

阅读数 6132

评论数 0

主成分分析教程

主成分分析(PCA)可以说是目前数据分析的中流砥柱,然而总是将其作为一个黑箱使用却不理解其本质。在搜索相关资料时发现,网上大多数对于PCA的教程都摘自于一篇英文文献(https://datajobs.com/data-science-repo/PCA-Tutorial-[Shlens].pdf),...

2018-04-10 14:54:18

阅读数 168

评论数 0

tensorflow 获取变量&打印权值等方法

tensorflow 获取变量&打印权值等方法 在使用tensorflow中,我们常常需要获取某个变量的值,比如:打印某一层的权重,通常我们可以直接利用变量的name属性 来获取,但是当我们利用一些第三方的库来构造神经网络的layer时,存在一种情况:就是我们自己无法定义该层的变量...

2018-01-27 11:32:06

阅读数 6233

评论数 0

拉格朗日乘子法与KKT条件

拉格朗日乘子法与KKT条件拉格朗日乘子法在实际中我们常常遇到这样一种优化问题(min和max都是一样的,因为min f(x)等价于max -f(x)): minf(x)s.tg(x)=0 \min f(x) \\ s.t \quad g(x)=0 这是一个等式约束问题,按照拉格朗日乘子法,...

2017-11-25 17:44:45

阅读数 723

评论数 0

Sparsity constraint稀疏约束详解

Sparsity constraint稀疏约束详解 引子: 线性模型是我们经常使用的一种模型,比如: 文本分类中,bag-of-words 有p = 20 K 个特征, 共有 N = 5K 个文本样例; 在图像去模糊化,图像分类中,有p=65K 个像素点特征,N=100个样例; 等等 这些...

2017-11-21 20:40:22

阅读数 1596

评论数 0

Python:functools partial详解

Python:functools partial详解 首先从一个例子说起: 首先我们定义了一个function add ,它接收两个参数a和b,返回a和b的和。然后我们使用partial ,第一个参数是fun ,即传入我们的函数add,然后再传入一个参数 ,这里是 1 ,它返回给我们一个新...

2017-08-04 10:48:10

阅读数 12479

评论数 0

统计学习方法:基于SMO算法的SVM的Python实现

统计学习方法:基于SMO算法的SVM的Python实现 前言: 在阅读本篇文章之前,希望您已经读过李航老师的《统计学习方法》中的第七章——支持向量机,本文实现SVM的算法使用序列最小 最优化算法(SMO)。其中若出现公式的引用,则来自于李航老师的《统计学习方法》,如 公式 (7.107)来自于...

2017-07-19 14:55:47

阅读数 1120

评论数 3

提示
确定要删除当前文章?
取消 删除
关闭
关闭