ICML2019: Learning Classifiers for Target Domain with Limited or No Labels

ICML2019: Learning Classifiers for Target Domain with Limited or No Labels

引言

本文提出了一种视觉属性编码(visual attribute encoding)方式,将图片编码为低维度的概率向量。得到了图片对应的编码后我们就可以训练分类器进行分类,进一步地该方法可以应用到aomain adaptation(DA),few shot learning(FSL),zero-shot learning (ZSL)。

问题定义

  • Unsupervised Domain Adaptation(UDA): 源域和目标域有着同样的label种类。训练集包括有label的源域样本,和无标记的目标域样本。测试集为目标域样本。
  • Few Shot Learning (FSL): 源域和目标域的label并不是完全统一的,在训练时我们有两个集合,训练集(由源域样本构成),支持集(support set,对于目标域的每个类别随机采样k张图片构成。)。测试集为目标域样本。
  • Zero-Shot Learning (ZSL): 在FSL的基础上,对于目标域我们在训练时没有label信息。测试集为目标域样本且label未出现过。
  • Generalized Zero-Shot Learning(GZSL): 训练过程同ZSL,但是测试集样本的标记可以是出现过的,也可以是未出现的。

框架

在这里插入图片描述

整个框架主要包含以下三部分:

  • a part-feature extractor:给定一张输入图片x,输出关于M个attention区域的特征z。z的特点是:关注于图像的不同前景区域,且尽可能不重叠。
  • a part-probability encoder:将z进行编码,得到更低维度的概率向量 π \pi π(类似于BoF的操作,利用字典进行编码)。
  • a task specific predictor:输入为概率向量 π \pi π(作者称之为LDVA编码),然后可以用来进行GZSL,FSL或者DA。

PS:这里我们可以得到:

  • part-feature extractor应该可以提取多样的,可区分的attention regions,这些regions是训练集图片公共的部分。比如对于鸟,这些regions应该包含嘴,尾巴,脚等。
  • primitive prototypical atoms即part-probability encoder编码后的表示应该可以重构回原有的part feature。所以又增加了图-1中的Part-Feature Decider部分。
  • 最后的predictor对于不同的任务可以进行定制。如上图中针对不同的任务有着不同的操作:Semantic Prediction,最近邻,传统的分类。

Part-Feature Extractor

这里使用Learning multiattention convolutional neural network for fine-grained
image recognition这篇文章提出的MA-CNN将输入的图片映射到一个有限的部分特征向量集合z(a finite set of part feature vectors)。MA-CNN包含一个全局的特征提取器E,和一个channel grouping model G,即一个权值矩阵。这样对于第m个部分,attention map为:
在这里插入图片描述
part feature z m z_m zm为:
在这里插入图片描述
引入一个loss来限制part的生成,即dis和div,两个部分互相制约。dis是为了让mask向最大响应的地方集中,div是为了找到不同的mask:
在这里插入图片描述
其中:
在这里插入图片描述

到这里,实际上都是MA-CNN已经实现的工作。

Part-Probability Encoder

首先我们来理解下这个编码到底是什么。
在这里插入图片描述

prototypical part types表示的就是基本元素(相当于BoF算法中的纹理单元,BoW算法中的word)。这里大家可以先浏览下之前的一篇博文:https://blog.csdn.net/cassiePython/article/details/80116082 。便于理解这里。对于每一个part,都可以使用一系列基本元素的组合来表征。相似的物体也就意味着有着相似的基本元素集合。对于一些差异较小的语义属性,编码后的差异也较小。这点也是符合实际的。

首先回顾下混和高斯模型:K-means 将样本分到离其最近的聚类中心所在的簇,也就是每个样本数据属于某簇的概率非零即 1。对比 K-means,混合高斯的不同之处在于,样本点属于某簇的概率不是非零即 1 的,而是属于不同簇有不同的概率值。高斯混合模型假设所有样本点是由 K 个高斯分布混合而成的,如统计一个班级里所有同学的身高,这些身高就是由男生身高和女生身高这两个高斯分布混合而成的。

作者这里假定每个part feature z m z_m zm都服从一个混合高斯分布:
在这里插入图片描述

因为有k种基本元素,所以这里是k个高斯分布的叠加。其中 π k , m \pi_{k,m} πk,m表示part m属于Gaussian component D k , m D_{k,m} Dk,m的component k的概率。也就是说 π k , m \pi_{k,m} πk,m衡量了在一个part中,包含一系列基本元素的概率。(PS.感觉类似于HoG特征)。

基于高斯混合模型这个假设,我们的目标就是希望用 π k , m \pi_{k,m} πk,m来表征特征。定义一个映射矩阵 P m P_m Pm
在这里插入图片描述

Guassian Mixture Condition: 根据高斯混合模型的理论,存在一个矩阵 D m D_m Dm
在这里插入图片描述

P m P_m Pm D m D_m Dm看过模型的参数,其中 P m P_m Pm表示encoder, D m D_m Dm表示decoder,有:
在这里插入图片描述
(PS. 根据文中的说明,仅仅依靠这个损失,就可以将 z m z_m zm映射到 π m \pi_m πm???感觉有些疑问,根据公式6,通过线性映射 P m P_m Pm可以将 z m z_m zm映射到 π m \pi_m πm。而 π m \pi_m πm应该是可以通过混合高斯模型直接求出来的(如使用EM算法)。如果是这样的话,我们还可以通过一个网络得到 P m P_m Pm,进而得到 D m D_m Dm。对于unseen的样本就可以直接通过网络 P m P_m Pm直接得到编码。感觉这样才是合理的。而从这个损失项中,只看到了重构的过程,以及两个正则化项。并没有看出是如何确保矩阵 P m P_m Pm是如何正确运作的。

Task Specific Predictors

得到概率编码之后我们将其作为task specific predictor V ( π ) V(\pi) V(π)的输入。

Generalized Zero-Shot Learning: 对于GZSL,神经网络 V ( π ) V(\pi) V(π)是一个语义预测模型(semantic prediction model),将 π \pi π映射到 Σ \Sigma Σ。给定输入图片x和它的语义属性 σ y \sigma_y σy,训练GZSL predictor的loss为:
在这里插入图片描述

(PS: 这个式子作者貌似写错了,第二三项相减不是0吗?)

Few-Shot Learning: 对于FSL,输入是一个source域的样本(x,y)时,使用交叉熵:
在这里插入图片描述

CE表示交叉熵,o表示one-hot编码。训练后,对于target域support set中的K-shot样本,构造一个最近邻分类器进行测试:
在这里插入图片描述
Domain Adaptation: 对于DA,目标域样本没有标记,这里使用了(Chadha & Andreopoulos, 2018; Saito et al., 2017)的方法对目标域样本附上伪标签进行训练,损失为:
在这里插入图片描述

End-to-End Training: 整个损失为:
在这里插入图片描述
这里考虑下为什么这种方法有效呢?作者在实验部分给出了分析:

  • 对于FSL,相比于深度特征的距离度量,LDVA编码对于同一类别的样本的类内距离的度量是更优的。
  • 对于GZSL,LDVA编码与semantic attribute更为“相似”:即映射关系很明显。
  • 对于DA,相比于深度特征,这种LDVA编码泛化能力更好。

PS. 这里虽然作者强调了LDVA编码在处理小样本上的益处,但是还是缺乏理论证明。其中,对于GZSL上的解释,直观上看是这样的。LDVA对于元素的编码与semantic attribute的对应关系还是比较明显的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值