ICML2019: Learning Classifiers for Target Domain with Limited or No Labels

ICML2019: Learning Classifiers for Target Domain with Limited or No Labels

引言

本文提出了一种视觉属性编码(visual attribute encoding)方式,将图片编码为低维度的概率向量。得到了图片对应的编码后我们就可以训练分类器进行分类,进一步地该方法可以应用到aomain adaptation(DA),few shot learning(FSL),zero-shot learning (ZSL)。

问题定义

  • Unsupervised Domain Adaptation(UDA): 源域和目标域有着同样的label种类。训练集包括有label的源域样本,和无标记的目标域样本。测试集为目标域样本。
  • Few Shot Learning (FSL): 源域和目标域的label并不是完全统一的,在训练时我们有两个集合,训练集(由源域样本构成),支持集(support set,对于目标域的每个类别随机采样k张图片构成。)。测试集为目标域样本。
  • Zero-Shot Learning (ZSL): 在FSL的基础上,对于目标域我们在训练时没有label信息。测试集为目标域样本且label未出现过。
  • Generalized Zero-Shot Learning(GZSL): 训练过程同ZSL,但是测试集样本的标记可以是出现过的,也可以是未出现的。

框架

在这里插入图片描述

整个框架主要包含以下三部分:

  • a part-feature extractor:给定一张输入图片x,输出关于M个attention区域的特征z。z的特点是:关注于图像的不同前景区域,且尽可能不重叠。
  • a part-probability encoder:将z进行编码,得到更低维度的概率向量 π \pi π(类似于BoF的操作,利用字典进行编码)。
  • a task specific predictor:输入为概率向量 π \pi π(作者称之为LDVA编码),然后可以用来进行GZSL,FSL或者DA。

PS:这里我们可以得到:

  • part-feature extractor应该可以提取多样的,可区分的attention regions,这些regions是训练集图片公共的部分。比如对于鸟,这些regions应该包含嘴,尾巴,脚等。
  • primitive prototypical atoms即part-probability encoder编码后的表示应该可以重构回原有的part feature。所以又增加了图-1中的Part-Feature Decider部分。
  • 最后的predictor对于不同的任务可以进行定制。如上图中针对不同的任务有着不同的操作:Semantic Prediction,最近邻,传统的分类。

Part-Feature Extractor

这里使用Learning multiattention convolutional neural network for fine-grained
image recognition这篇文章提出的MA-CNN将输入的图片映射到一个有限的部分特征向量集合z(a finite set of part feature vectors)。MA-CNN包含一个全局的特征提取器E,和一个channel grouping model G,即一个权值矩阵。这样对于第m个部分,attention map为:
在这里插入图片描述
part feature z m z_m zm为:
在这里插入图片描述
引入一个loss来限制part的生成,即dis和div,两个部分互相制约。dis是为了让mask向最大响应的地方集中,div是为了找到不同的mask:
在这里插入图片描述
其中:
在这里插入图片描述

到这里,实际上都是MA-CNN已经实现的工作。

Part-Probability Encoder

首先我们来理解下这个编码到底是什么。
在这里插入图片描述

prototypical part types表示的就是基本元素(相当于BoF算法中的纹理单元,BoW算法中的word)。这里大家可以先浏览下之前的一篇博文:https://blog.csdn.net/cassiePython/article/details/80116082 。便于理解这里。对于每一个part,都可以使用一系列基本元素的组合来表征。相似的物体也就意味着有着相似的基本元素集合。对于一些差异较小的语义属性,编码后的差异也较小。这点也是符合实际的。

首先回顾下混和高斯模型:K-means 将样本分到离其最近的聚类中心所在的簇,也就是每个样本数据属于某簇的概率非零即 1。对比 K-means,混合高斯的不同之处在于,样本点属于某簇的概率不是非零即 1 的,而是属于不同簇有不同的概率值。高斯混合模型假设所有样本点是由 K 个高斯分布混合而成的,如统计一个班级里所有同学的身高,这些身高就是由男生身高和女生身高这两个高斯分布混合而成的。

作者这里假定每个part feature z m z_m zm都服从一个混合高斯分布:
在这里插入图片描述

因为有k种基本元素,所以这里是k个高斯分布的叠加。其中 π k , m \pi_{k,m} πk,m表示part m属于Gaussian component D k , m D_{k,m} Dk,m的component k的概率。也就是说 π k , m \pi_{k,m} πk,m衡量了在一个part中,包含一系列基本元素的概率。(PS.感觉类似于HoG特征)。

基于高斯混合模型这个假设,我们的目标就是希望用 π k , m \pi_{k,m} πk,m来表征特征。定义一个映射矩阵 P m P_m Pm
在这里插入图片描述

Guassian Mixture Condition: 根据高斯混合模型的理论,存在一个矩阵 D m D_m Dm
在这里插入图片描述

P m P_m Pm D m D_m Dm看过模型的参数,其中 P m P_m Pm表示encoder, D m D_m Dm表示decoder,有:
在这里插入图片描述
(PS. 根据文中的说明,仅仅依靠这个损失,就可以将 z m z_m zm映射到 π m \pi_m πm???感觉有些疑问,根据公式6,通过线性映射 P m P_m Pm可以将 z m z_m zm映射到 π m \pi_m πm。而 π m \pi_m πm应该是可以通过混合高斯模型直接求出来的(如使用EM算法)。如果是这样的话,我们还可以通过一个网络得到 P m P_m Pm,进而得到 D m D_m Dm。对于unseen的样本就可以直接通过网络 P m P_m Pm直接得到编码。感觉这样才是合理的。而从这个损失项中,只看到了重构的过程,以及两个正则化项。并没有看出是如何确保矩阵 P m P_m Pm是如何正确运作的。

Task Specific Predictors

得到概率编码之后我们将其作为task specific predictor V ( π ) V(\pi) V(π)的输入。

Generalized Zero-Shot Learning: 对于GZSL,神经网络 V ( π ) V(\pi) V(π)是一个语义预测模型(semantic prediction model),将 π \pi π映射到 Σ \Sigma Σ。给定输入图片x和它的语义属性 σ y \sigma_y σy,训练GZSL predictor的loss为:
在这里插入图片描述

(PS: 这个式子作者貌似写错了,第二三项相减不是0吗?)

Few-Shot Learning: 对于FSL,输入是一个source域的样本(x,y)时,使用交叉熵:
在这里插入图片描述

CE表示交叉熵,o表示one-hot编码。训练后,对于target域support set中的K-shot样本,构造一个最近邻分类器进行测试:
在这里插入图片描述
Domain Adaptation: 对于DA,目标域样本没有标记,这里使用了(Chadha & Andreopoulos, 2018; Saito et al., 2017)的方法对目标域样本附上伪标签进行训练,损失为:
在这里插入图片描述

End-to-End Training: 整个损失为:
在这里插入图片描述
这里考虑下为什么这种方法有效呢?作者在实验部分给出了分析:

  • 对于FSL,相比于深度特征的距离度量,LDVA编码对于同一类别的样本的类内距离的度量是更优的。
  • 对于GZSL,LDVA编码与semantic attribute更为“相似”:即映射关系很明显。
  • 对于DA,相比于深度特征,这种LDVA编码泛化能力更好。

PS. 这里虽然作者强调了LDVA编码在处理小样本上的益处,但是还是缺乏理论证明。其中,对于GZSL上的解释,直观上看是这样的。LDVA对于元素的编码与semantic attribute的对应关系还是比较明显的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
加密狗系列—软件狗 面向单机环境的低成本加密方案   软件狗是使用在计算机并行口和USB口上的用于软件保护的硬件产品。软件狗采用端口噪声技术,提供100字节的掉电保护存储器,具备反跟踪能力,是经济实用软件保护解决方案的首选。软件狗开发套件有两种选型:并口型和USB型。软件开发商可以采用多种方法保护软件,防止软件被非法拷贝使用。软件狗开发套件由:软件狗、加密接口、开发商工具等组成。 1.软件狗 软件狗指安装在并口上或 USB 口上的硬件狗。软件狗是一个可编程、可读写的存储设备,具有 100 个字节的数据存储区。如果软件狗插在计算机上,您可以通过相应的加密接口函数或开发商工具对软件狗进行访问。 2.加密接口 软件狗开发套件提供的加密接口是一套包含各种开发语言的程序接口模块,可以嵌在程序的源代码中。您可以在您程序中使用软件狗开发套件提供的加密接口对软件狗进行操作。 3.开发商工具(DogEdt32.EXE) 软件狗开发商工具可以使开发商方便地对软件狗存储区进行编辑、读取系列号以及连续初始化等操作。 工作原理: 开发商程序通过调用软件狗开发套件提供的接口模块对软件狗操作,软件狗响应该操作并通过接口模块将相应数据返回给开发商程序。开发商程序可以对返回值进行判定并采取相应的动作。如果返回无效的响应,表明没有正确的软件狗,开发商可以将应用程序终止运行。 简要示意如下: 软件狗开发套件提供了两种加密方案:使用 Obj 、 DLL 、 ActiveX 控件或者直接使用外壳工具,请根据您的需求选择方案。 加密方案一:使用 Obj 、 DLL 、 ActiveX 控件 Obj 、 DLL 、 ActiveX 控件提供了操作软件狗的接口函数,您可以直接在应用程序的源代码里加入这些接口函数的调用,来保护您的一个或者多个软件,然后重新编译您的应用程序。 由您来设置应用程序中调用加密接口的次数以及没有发现软件狗采取的措施。原则上您调用、设置的加密接口越多将更有利于阻止潜在破坏您的软件保护。 加密方案二:使用外壳工具 使用外壳工具对软件保护是一种快速、简单的保护方案。它不象使用接口函数需要对源代码进行改动,而是自动给您的可执行应用程序加了一个保护层。在程序开始运行和运行当中会自动地访问软件狗是否存在。假如软件狗不存在,用户将看到一个错误提示,该应用程序将不能运行。 产品特点: 软件狗开发套件适用于 DOS 、 Windows 3X/9X/ME/NT/2000/XP 、 Linux 操作系统,支持几乎所有主流编程语言、开发工具。软件狗的主要特点如下: 数据交换随机噪声技术 有效地对抗逻辑分析仪及各种调试工具的攻击,完全禁止软件仿真程序模拟并口的数据。 迷宫技术 在 RC-DL 函数入口和出口之间包含大量复杂的判断跳转干扰代码,动态改变执行次序,提升 RC-DL 的抗跟踪能力。 时间闸 硬件狗内部设有时间闸,各种操作必须在规定的时间内完成。硬件狗正常操作用时很短,但跟踪时用时较长,超过规定时间,硬件狗将返回错误结果。 AS 技术 API 函数调用与 SHELL 外壳加密相结合的方式,同时使用能够达到极高的加密强度。 RC-DL 开发套件在外壳加密工具中与调用的 API 函数建立了对应关系。这样处理后,程序中调用的 API 函数只有在有外壳的情况下才能正确运行,而外壳本身隐蔽了对 API 函数的调用。 抗共享 可以通过编程的方式实现对抗并口共享器。 存储器 提供 100 字节掉电保持数据存储区供开发商存放关键数据、配置参数等信息,可通过 RC-DL 开发商工具或接口函数对存储区进行读写。 改良的硬件驱动程序 驱动程序的安装及发布更加方便、快捷,开发商只需使用 InstDrv.exe 安装驱动程序,硬件即可正常工作。 崭新的硬件狗编辑工具 DogEdt32.exe 集成了原有 DogEdt32.exe 、 Reveal.exe 、 Convert.exe 三个工具,并新增错误码查询功能,令硬件狗编辑调试过程更趋简捷、顺畅。 高强度动态库加密方式 在原有加密方式基础上,新增 C 语言高强度动态库加密方式,并有效运用动态库认证安全机制,确保动态库调用具有无与伦比的安全可靠性。 支持 ActiveX 控件 开发商可以在网页中或 VB 、 VC 中使用 ActiveX 控件对硬件狗进行操作。 Linux 模块 提供了针对 Linux 内核 2.2 和 2.4 版本驱动程序,开发商可以使用 Linux 模块保护运行于 Linux 操作系统上的应用程序。 新增功能: 软件狗开发套件 3.0 版新增功能在软件狗开发套件 V3.0 中,新增了与原并口硬件完全兼容的 UDA 型 USB 软件狗。 USB 软件狗也提供了 100 字节的用户存储区。新的开发商工具( DogEdt32.EXE )或接口函数既可以老的并口硬件,也可以对新的 USB 硬件进行操作。 已安装了软件狗开发套件 V2.1 的老用户如要使用 UDA 型 USB 软件狗,必须重新安装软件狗开发套件 V3.0 ,以安装 UDA 型 USB 软件狗的驱动程序并更新开发套件的 OBJ 。 开发商如果使用 WIN32 模块,在 Windows98 或更高版本( WindowsME/2K/XP )下既可以使用 USB 软件狗也可以使用并口软件狗。目前暂不提供 USB 软件狗在 Windows NT4 上的驱动程序,即在 Windows NT4 操作系统上,目前只能使用并口软件狗。 在安装 Linux2.4 以上内核的 Linux 系统中,既可以使用并口软件狗也可以使用 USB 软件狗。 WIN16 、 DOS16 、 DOS32 模块本次没有改动,仍只支持并口软件狗。 软件狗开发套件 目前最新版本为 v3.0 支持并口硬件 RC-DL (现已更名为 PDL ) , 支持 USB 口硬件 UDA 适用语言环境: 并口型软件狗: DOS16: C , C++, FORTRAN, ASM, Pascal, BASIC ( BASCOM, Quick,True, Turbo ) , FOXPRO, Clipper, Foxbase, Dbase, EXE/COM 文件;DOS32: C, C++ ( High, NDP, Watcom ), FORTRAN ( NDP, PowerStation,Watcom) , EXP 文件; Win16: C, C++ ( Borland, Visual ), Visual BASIC, FOXPRO, PowerBuilder,Delphi Win32: C, C++ ( Visual, Borland, C++Builder, MFC ), FORTRAN ( LAHEY,PowerStation, Visual ), Java, VisualBasic, VisualFoxpro, PowerBuilder,Delphi,JavaScript, VBScript, VBA, InstallShield, AutoCAD, .NET 等。 Linux: C, C++, Java USB 型软件狗: Win32: C, C++ ( Visual, Borland, C++Builder, MFC), FORTRAN ( LAHEY, PowerStation, Visual ), Java, VisualBasic, VisualFoxpro, PowerBuilder, Delphi , JavaScript, VBScript, VBA, InstallShield, AutoCAD, .NET 等等。 Linux: C, C++, Java 适用操作系统: 并口型软件狗: DOS , Windows 3.x / 9x / ME / NT / 2000 / XP / Sever 2003 LINUX (Red hat 内核 2.2 / 2.4) USB 型软件狗: Windows 98 / ME / 2000 / XP / Sever 2003 LINUX (Red hat 内核 2.2 / 2.4) 开发商升级注意事项: 并口 RC-DL (现已更名为 PDL )型软件狗的软件软件狗开发套件 V3.0 与原 DJ/DK 完全兼容,即使用软件狗开发套件 V3.0 的驱动程序、模块及工具,可以正常操作 DJ/DK 型软件狗。所以建议使用原 DJ/DK 软件的开发商将您的驱动程序、模块及工具全部用软件狗开发套件 V3.0 (光盘版)套件升级。 如果您仍旧使用原有的 DI/DJ/DK 驱动程序、模块及工具,在 DOS 、 Windows 9X/NT/2000 下对 RC-DL 只能做读操作,写操作将失败。如果您不想改动已发行的软件,而还要使用 RC-DL 型软件狗,只升级驱动程序也可以,但您的程序必须是 WIN32 程序。如果您加密的程序是 DOS16 、 DOS32 或 WIN16 程序,您必须升级新的模块及工具,否则将无法对 RC-DL 型软件狗进行写操作。 使用方法: 1.对 EXE 文件 ( 或 COM 文件 ), 利用配套软件中的 EXE 文件加密工具加密。 2 对数据库文件 (PRC 、 FOX 、 APP 、 DBF), 利用配套软件中的加密工具加密。 3 对于 C 语言及其它编译型语言,配套软件中提供可链接的模块文件 (OBJ 文件 ) , 模块文件中提供两个函数 :(1) 写数据 ; ⑵读数据。开发商可在要加密软件的源码中加入适当的调用语句,对软件狗进行读写操作,以确定对应的软件狗是否存在,从而决定程序是否继续运行。对加入软件狗函数调用的源程序编译后,链接时加上软件狗的模块文件 (OBJ) 即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值