1、概述
在利用因果图和判定表驱动法来设计测试用例时,作为输入条件的原因和输出结果之间的关系有时候很难从需求规格说明中得到;或者因果关系非常庞大,导致利用因果图得到的测试用例数目非常大,为了有效地、合理地减少测试的工时与费用(测试用例的数量),就可以使用正交实验法。
2、定义
此方法是由数理统计学科中正交实验方法演化而来的一种用于测试多条件多输入的用例设计方法, 是根据Galois(伽罗瓦)理论导出的“正交表”,合理安排实验的一种科学实验设计方法,是研究多因子(因素)多水平(状态)的一种实验方法。 其根据实验数据的正交性,从全面实验数据中挑选有代表性的点进行实验,这些点具备了“均匀分散、齐整可比”的特点,正交实验设计是一种基于正交表的、高效率、快速、经济的实验设计方法。但其也有一定的缺点,由于正交表本身是从数学公式引申而来的,所以在使用过程中无法考虑输入参数相互组合的实际意义,因此在实际使用过程中需要根据相关的业务进行判断,删除无效的输入(数据)组合,补充有效的输入(数据)组合。
相关术语:
- 因子:通常指参与实验、影响实验结果的条件。
- 水平:通常指影响实验因子的取值或输入,将其称为某个因子的水平。
3、特点步骤
1. 正交实验法设计测试用例的特点
使用正交实验法,需要考虑参与因子“均匀分散、齐整可比”的特性,保证每个实验因子及其取值都能参与实验,减少人为测试习惯导致的覆盖率偏低及冗余测试用例的风险。故而其具有节省时间、控制测试用例数量、保证测试用例