Python Pandas 基本使用(Series)

Python Pandas基本使用(DataFrame)-CSDN博客

Python Pandas 基本使用(Series)-CSDN博客

目录

Series类型:

自动生成索引:

自定义索引:

从字典创建:

从ndarray创建:

对齐操作:


Pandas是Python第三方库,提供高性能易用数据类型(Series,DataFrame)和分析工具。网址:http://pandas.pydata.org

Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用。NumPy关注数据间的关系,而Pandas关注数据与索引间的关系。

Series类型:

自动生成索引:

import pandas as pd
a = pd.Series([9,8,7,6])
a

自定义索引:

import pandas as pd
a = pd.Series([9,8,7,6],index=['a','b','c','d'])
a

从字典创建:

import pandas as pd
a = pd.Series({'a':9,'b':8,'c':7})
a

从ndarray创建:

import pandas as pd
import numpy as np

a = pd.Series(np.arange(5))
a

Series基本操作如下代码所示,可以分别获得索引和值,自动索引和指定索引并存,其基于自动索引的切片与list切片类似。

import pandas as pd
a = pd.Series([9,8,7,6],index=['a','b','c','d'])
print(a.index)
print(a.values)
print(a['b'])
print(a[1])
print(a[['a','c']])

对齐操作:

Series在运算中会自动对齐不同索引的数据,如下例中的索引:‘c’,‘d’。

import pandas as pd
a = pd.Series([1,2,3],['c','d','e'])
b = pd.Series([9,8,7,6],['a','b','c','d'])
a+b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值