Frequent values
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains nintegers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
10 3
-1 -1 1 1 1 1 3 10 10 10
2 3
1 10
5 10
0
1
4
3
将原序列转换一下,if(num[i]==num[i-1]) f[i]=f[i-1]+1;
else f[i]++;
对于每个询问(l,r),分为两个部分,前半部分求与l之前相同的数的个数直到t,后半部分从t开始直接用RMQ求解最大值就行了。
最后结果为max(前半部分,后半部分)。
然后用RMQ
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define MAXN 100000
#define INF 0x3f3f3f
using namespace std;
int dp[MAXN][50];
int n;
int a[MAXN],num[MAXN],rt[MAXN];
void rmqis()
{
for(int j=1;(1<<j)<=n;j++)
{
for(int i=1;i+(1<<j)-1<=n;i++)
{
dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
}
}
int rmq(int l,int r)
{
if(l>r) return 0;
int k=0;
while((1<<(k+1))<=r-l+1) k++;
return max(dp[l][k],dp[r-(1<<k)+1][k]);
}
int main()
{
int q;
while(scanf("%d",&n)&&n)
{
scanf("%d",&q);
a[0]=INF;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if(i==1)
num[i]=1;
else if(a[i]==a[i-1])
num[i]=num[i-1]+1;
else
num[i]=1;
dp[i][0]=num[i];
}
for(int i=n;i>=1;i--)
{
if(a[i]==a[i+1]) rt[i]=rt[i+1];
else rt[i]=i;
}
rmqis();
int l,r,t,ans,tm;
while(q--)
{
scanf("%d%d",&l,&r);
if(rt[l-1]==rt[l]) t=min(r,rt[l])+1;
else t=l;
tm=rmq(t,r);
ans=max(tm,t-l);
printf("%d\n",ans);
}
}
return 0;
}
人一我百!人十我万!永不放弃~~~怀着自信的心,去追逐梦想。