【深度学习学习笔记】4.前馈神经网络之一:激活函数(Sigmoid和ReLu)

@TOC

激活函数:一个非线性的函数

1.Sigmoid型激活函数:

Logistic函数:

1 1 + e x p ( − x ) \frac{1}{1+exp(-x)} 1+exp(x)1,值域(0,1)

Tahn函数:

e x p ( x ) − e x p ( − x ) e x p ( x ) + e x p ( − x ) \frac{exp(x)-exp(-x)}{exp(x)+exp(-x)} exp(x)+exp(x)exp(x)exp(x),值域(-1,1)
在这里插入图片描述

Hard Sigmoid函数:用分段函数近似Sigmoid函数

hard-logistic(x)

hard-logistic(x)= max(min(0.25x+0.5,1),0)

hard-tanh(x)

hard-tanh(x)= max(min(x,1),-1)
在这里插入图片描述

2.ReLU:修正线性单元,深层神经网络中常用的激活函数。

ReLU(x) = max(0, x)。

即输入<0,输出=0。输入>0,输出=输入。
在这里插入图片描述

优点:
左饱和函数,缓解了神经网络的梯度消失问题,加速梯度下降的收敛速度。

缺点:

  • 是非零中心化的:给后一层的神经网络引入偏置偏移,会影响梯度下降的效率。
  • 容易死亡: 如果参数在一次不恰当的更新后,第一个隐藏层中的某个ReLU神经元在所有的训练数据上都不能被激活,那么这个神经元自身参数的梯度永远都会是0, 在以后的训练过程中永远不能被激活。

ReLU的变种:

带泄露的ReLU:

LeakyReLU(x) = max(0, x) + γ γ γmin(0, x)
在输入 x < 0时,保持一个很小的梯度λ。
这样当神经元非激活时也能有一个非零的梯度可以更新参数,避免永远不能被激活。

γ γ γ< 1时,带泄露的ReLU也可以写为LeakyReLU(x) = max(x, γ γ γx)

带参数的ReLU:

PReLU(x)= max(0, x) + γ i γ_i γimin(0, x)
引入一个可学习的参数,允许不同神经元有不同的参数。

指数线性单元:ELU

在这里插入图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值