计算机视觉
文章平均质量分 64
bbings
https://bbing.com.cn/
展开
-
感知器及其C++的实现
本来计划这篇博客写如何用web前端写2048,但是鉴于以前的代码写得太乱,暂时并不打算继续这个话题了;本篇的主题是“感知器及其C++的实现”,我会简答介绍模式识别中的感知器是个什么东西,并且会给出我写的C++代码进入正题:什么是感知器?数据驱动的引出:比如说某银行的分析软件有这样一项功能,通过输入某客户的个人信息(年龄、性别、职业、收入、欠债情况、信用情况等),返回是否给该客户原创 2017-12-18 22:49:29 · 1318 阅读 · 1 评论 -
学习SVM
我们先来看看线性SVM。 SVM的全程是Support Vector Machine,即支撑向量机;顾名思义,SVM核心在于支撑向量,因为SVM认为其最优分类面是由支撑向量决定的。 什么是支撑向量呢?如果你曾经接触过感知器算法就会知道,对于线性感知器,找出来的分类面似乎没有一种判定方法证明其分类面是优的,暂且也只能说这个分类面可以用于分类。但是SVM就不同了,它找出来的分类面尽可能...原创 2018-02-06 11:35:15 · 286 阅读 · 0 评论 -
处理视频流时可能出现的重复帧问题及解决办法
在Ubuntu下使用opencv处理视频流时,由于相机帧率跟不上(相机模块在另外一个线程运行,且帧率太低),导致算法会处理一些相同的图像,从而返回相同的结果,如果将结果返回给伺服机构,则可能导致伺服机构奔溃。 想到三种解决方法: 1. 用高帧率的相机,但是由于经费问题,此方案暂缓执行; 2. 判断返回值是否相同,如果返回的数据完全相同,则有比较高的置信度认为这是通过同一幅图像返回的结果;...原创 2018-05-05 14:14:47 · 7200 阅读 · 0 评论 -
Eigen实现坐标转换
(《视觉SLAM十四讲》第三讲习题7)设有小萝卜一号和二号在世界坐标系中。一号位姿q1 = [0.35, 0.2, 0.3, 0.1],t1=[0.3, 0.1, 0.1]。二号位姿q2=[-0.5, 0.4, -0.1, 0.2], t2=[-0.1, 0.5, 0.3].某点在一号坐标系下坐标为p=[0.5, 0, 0.2].求p在二号坐标系下的坐标假设在世界坐标系中p点的坐标为P...原创 2018-05-27 20:31:50 · 5031 阅读 · 2 评论 -
数据衰减的一些方法和比较
数据衰减的一些方法和比较在计算机视觉实时应用中,有时候需要向云台发送一些数据,比如说角度,使之运动到相应的角度。但是考虑到有时候如果直接发送目标的相对角度,可能角度比较大,从而导致云台运动过于剧烈,此时考虑将发送的数据做一个衰减。一般直接想到对发送的数据做线性衰减,比如说发送数据yaw:yaw /= 10;这样做能达到目的,但是对于所有数据都做了相同的衰减,对于很小的数,也...原创 2018-06-10 15:19:46 · 8258 阅读 · 0 评论 -
对含小目标的灰度图二值化方法
对含小目标的灰度图二值化方法在实际经历中,对原始图像经过一定操作之后得到了包含目标的灰度图像,其中,目标在图像中属于比较亮的区域,背景则是相对较暗的区域,现在需要将目标提取出来。最先想到的方法是将灰度图像二值化,并且希望目标区域二值图中为1(255)的集合,背景则是0的集合。一般想法可能直接是阈值分割,对于单帧或者图像序列亮度及目标亮度变化不大的情况一般适用,但是对于复杂情况可能不...原创 2018-07-04 09:04:37 · 848 阅读 · 0 评论 -
基本矩阵与本质矩阵
基本矩阵与本质矩阵基本矩阵与本质矩阵的数学推导:假设空间中一点P=[X,Y,Z]TP=[X,Y,Z]TP = [X, Y, Z]^T。P在相机A相平面坐标为PA=[xA,yA,1]TPA=[xA,yA,1]TP_A = [x_A, y_A, 1]^T;P在相机B相平面坐标为PB=[xB,yB,1]TPB=[xB,yB,1]TP_B = [x_B, y_B, 1]^T;相机A...原创 2018-08-06 11:52:33 · 1859 阅读 · 0 评论