昨天本来只是想刷个区间dp而以,然后碰到了这题
然后就用一下午学了凸包的判定和最优三角形
然后今天花了三个小时把这题AC了,也强化了自己对凸包,最优三角形和区间dp的理解
题意就是给你一个点集,如果这个点集中的点不能全部构成一个凸包的话,就直接输出一句话
否则就输出能把这个凸包切成三角形的最小花费,算花费的公式已经给出来了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define maxn 400
using namespace std;
struct Point
{
int x,y;
};
bool operator <(Point a,Point b)
{
if (a.y!=b.y)
return a.y<b.y;
else
return a.x<b.x;
}
bool mult(Point a,Point b,Point o)
{
return ((b.y-o.y)*(a.x-o.x)>=(a.y-o.y)*(b.x-o.x));
}
int Graham(Point *p,int n,Point* Set)
{
sort(p+1,p+n+1);
int head;
if (n<3) return 0;
Set[1]=p[1];Set[2]=p[2];
head=2;
for (int k=3;k<=n;k++)
{
while(head!=1)
if (mult(p[k],Set[head],Set[head-1])) head--;
else break;
Set[++head]=p[k];
}
int len=head;
Set[++head]=p[n-1];
for (int k=n-2;k>=1;k--)
{
while(head!=len)
if (mult(p[k],Set[head],Set[head-1])) head--;
else break;
Set[++head]=p[k];
}
return --head;
}
Point P[maxn],Set[maxn];
int cost[maxn][maxn],Mod,dp[maxn][maxn];
int cal(int i,int j)
{
return ((abs(Set[i].x+Set[j].x)*abs(Set[i].y+Set[j].y))%Mod);
}
int DP(int l,int r)//区间dp
{
if (r<=l+2) return 0;如果刚好构成一个三角形的话,因为割这一条边的价值我们已经计算过了,所以返回0就好
if (dp[l][r]) return dp[l][r];
int ans(0x3f3f3f3f);
for (int k=l+1;k<r;k++)
ans=min(ans,cost[k][l]+cost[k][r]+DP(l,k)+DP(k,r));
dp[l][r]=ans;
return ans;
}
int main()
{
int n;
while(~scanf("%d %d",&n,&Mod))
{
for (int k=1;k<=n;k++)
scanf("%d %d",&P[k].x,&P[k].y);
int kk=Graham(P,n,Set);
if (kk!=n)
{printf("I can't cut.\n");continue;}
memset(cost,0,sizeof(cost));
memset(dp,0,sizeof(dp));
for (int i=1;i<=n-2;i++)
for (int j=i+2;j<=n;j++)
cost[i][j]=cost[j][i]=cal(i,j);
printf("%d\n",DP(1,n));
}
}