zoj3537 凸包,最优三角形,区间dp

昨天本来只是想刷个区间dp而以,然后碰到了这题

然后就用一下午学了凸包的判定和最优三角形

然后今天花了三个小时把这题AC了,也强化了自己对凸包,最优三角形和区间dp的理解

题意就是给你一个点集,如果这个点集中的点不能全部构成一个凸包的话,就直接输出一句话

否则就输出能把这个凸包切成三角形的最小花费,算花费的公式已经给出来了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define maxn 400

using namespace std;

struct Point
{
    int x,y;
};

bool operator <(Point a,Point b)
{
    if (a.y!=b.y)
        return a.y<b.y;
    else
        return a.x<b.x;
}

bool mult(Point a,Point b,Point o)
{
    return ((b.y-o.y)*(a.x-o.x)>=(a.y-o.y)*(b.x-o.x));
}

int Graham(Point *p,int n,Point* Set)
{
    sort(p+1,p+n+1);
    int head;

    if (n<3) return 0;

    Set[1]=p[1];Set[2]=p[2];
    head=2;

    for (int k=3;k<=n;k++)
    {
        while(head!=1)
            if (mult(p[k],Set[head],Set[head-1])) head--;
            else break;
        Set[++head]=p[k];
    }

    int len=head;
    Set[++head]=p[n-1];

    for (int k=n-2;k>=1;k--)
    {
        while(head!=len)
            if (mult(p[k],Set[head],Set[head-1])) head--;
            else break;
        Set[++head]=p[k];
    }

    return --head;
}

Point P[maxn],Set[maxn];
int cost[maxn][maxn],Mod,dp[maxn][maxn];

int cal(int i,int j)
{
    return ((abs(Set[i].x+Set[j].x)*abs(Set[i].y+Set[j].y))%Mod);
}

int DP(int l,int r)//区间dp
{
    if (r<=l+2) return 0;如果刚好构成一个三角形的话,因为割这一条边的价值我们已经计算过了,所以返回0就好
    if (dp[l][r]) return dp[l][r];

    int ans(0x3f3f3f3f);
    for (int k=l+1;k<r;k++)
        ans=min(ans,cost[k][l]+cost[k][r]+DP(l,k)+DP(k,r));
    dp[l][r]=ans;
    return ans;
}

int main()
{
    int n;
    while(~scanf("%d %d",&n,&Mod))
    {
        for (int k=1;k<=n;k++)
            scanf("%d %d",&P[k].x,&P[k].y);

        int kk=Graham(P,n,Set);
        if (kk!=n)
        {printf("I can't cut.\n");continue;}

        memset(cost,0,sizeof(cost));
        memset(dp,0,sizeof(dp));

        for (int i=1;i<=n-2;i++)
            for (int j=i+2;j<=n;j++)
                cost[i][j]=cost[j][i]=cal(i,j);

        printf("%d\n",DP(1,n));
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值