这篇文章概述了自 Alsop 等人发表的 ASL 共识论文以来,团队开发或采用高级动脉自旋标记成像 (ASL) 方法的一系列最新技术发展。该文章是国际医学磁共振学会灌注研究组的一系列评论/推荐论文的一部分。在这里,我们专注于读出和轨迹、图像重建、降噪、部分容积校正、非灌注参数量化、功能磁共振成像、指纹识别、血管选择性 ASL、血管造影、深度学习和超高场 ASL 方面的提高。我们的目标是提供对这些新方法的高水平理解并为其后续实施提供一些指导,促进研究小组和 MRI 供应商采用这些新方法。在本文之外的其他文章中讨论其他主题,包括:速度选择性 ASL、多时间点 ASL、身体 ASL 和临床 ASL 建议。本文发表在Magnetic Resonance in Medicine杂志。
关键词:动脉自旋成像, 脑血流量, 核磁影像, 灌注, 技术改进, 血管成像
1 引言
自 1990 年代初推出以来,动脉自旋标记成像 (ASL) 已被证明是传统灌注成像的非侵入性、非对比的强大替代方法。2015 年 ASL 临床实施共识论文的发表有助于 ASL 脑成像在临床中的应用,并为研究人员提供了通用参考。此外,它还为主要的 MR 制造商提供了 ASL 序列实施的专家指南,这些制造商现在都使用相同的标记策略(伪连续 ASL [PCASL])和类似的读出(3D 螺旋或梯度和自旋回波 [GRASE])。因此,ASL 的临床应用显著增加,并建立了未来发展的基准。
尽管如此,自 2015 年以来,已经开发了ASL 采集设计(见图 1)和辅助测量的变化和改进,以提高图像质量,提供更准确的脑血流 (CBF) 量化或测量其他的生理参数,并将ASL应用扩展到大脑之外的身体等其他位置。
图1 ASL 脉冲序列的典型组成部分,突出近年来取得的一些进展
本文将回顾 ASL 的新功能,包括血管选择性 ASL、灌注以外的参数量化、指纹识别和深度学习 (DL) 技术的使用、基于 ASL 的 fMRI 以及提高图像质量的后处理技术。我们将介绍这些新技术,以提供高水平观点和一些建议,这些建议是基于作者的经验,并得到国际医学磁共振学会 (ISMRM) 灌注研究组的认可。我们的目标是促进研究小组和 MR 扫描仪供应商采用这些改进技术。
某些研究主题将超出本概述的范围,会在单独的文章中进行描述。例如,速度选择性 ASL 是 ASL 领域最重要的创新之一,因为它消除了动脉通过时间的混淆,并且可以显著提高 SNR。此外,使用多时间点的定量 ASL 可以更准确地估计灌注以及其他参数,特别是动脉通过时间 (ATT)。此外,由于创新技术的发展,身体 ASL 也取得了很大的进步。这些研究主题相当广泛;每一个都值得写一篇综述,因此不会在本文中介绍。
2 读出和轨迹
共识文件推荐了具有快速自旋回波 (FSE) 或Cartesian GRASE 螺旋堆叠的 3D 分段成像序列。基于 EPI 或 2D 螺旋的 2D 多层方法(有或没有同时多层激发)也是可能的,并且可能在功率沉积限制禁止使用多个重聚焦脉冲的高场强下有用; 3D 方法往往在 SNR 和背景抑制的有效性方面具有优势,可在可接受的扫描时间内实现全脑覆盖。
但是,GRASE 和 FSE 读出都使用长回波时间来编码大脑中的所有切片。沿回波序列的 T2 衰减会导致切片方向上的模糊,而重聚焦脉冲之间的 T2* 衰减会导致采集面模糊。通过将读出分成多段可以在一定程度上减轻模糊,但代价是获取每个体积的时间更长(降低时间分辨率)和增加对运动的敏感性。最近已经提出了一些新的采集方案和图像重建技术来克服其中的部分问题。
2.1 3D 分段读出的改进
2.1.1 可变的翻转角设计
在传统的 3D 读出中,重新聚焦的翻转角是恒定的,产生的信号会从一个回波衰减到下一个回波,从而导致不同图像之间的信号模糊。可变翻转角设计可以在回波序列中产生更一致的信号,通过减少信号调制,进而减少模糊效应。例如,可以使用扩展相位图方法来设计 3D-GRASE 的翻转角顺序,从而大大减小模糊点扩散函数的宽度。这种方法还可以与 k-space的回波幅度缩放相结合,以针对特定的信号响应。除了提高图像质量外,这种方法还显著减少由 FSE 回波序列产生的功率沉积的可能性。
2.1.2 螺旋读出的改进
螺旋轨迹可能对较差的磁场均匀性、涡流和梯度缺陷非常敏感,从而导致严重的图像模糊和失真,尤其是在使用高梯度转换率时。一种解决方案是测量实际的梯度轨迹,并使用它来改进图像重建。与标准螺旋堆叠相比,另一种方法依赖于使用 3D 螺旋输入/输出(称为圆柱分布式螺旋)组合来改进螺旋轨迹,以减少信号丢失和图像模糊。
2.1.3 加速 3D 读数
ASL 的 TR 主要受标记持续时间和标记后延迟时间的限制,因为数据采集时间只是 TR 的一小部分,因此加速采集方案不会显著降低 TR。欠采样的 3D 轨迹能够减少回波序列持续时间和/或所需的分割程度,提高时间分辨率和对运动的鲁棒性,减轻模糊伪影。
在Cartesian成像中,例如使用改进GRAPPA的并行成像方法能够重建提供更高的 SNR,缩短TE 和读出时间,减少图像模糊。对于非Cartesian采样成像,切片方向上的一维加速度与可变密度螺旋相结合可用于减少回波序列长度,从而显著减少模糊。
鸡尾酒并行采集技术 (Controlled Aliasing In Parallel Imaging Results In Higher Acceleration, CAIPIRINHA) 可以通过减少 g 因子噪声放大来进一步提高 3D-GRASE 的图像质量。与时间相关的 CAIPIRINHA 采样模式有其他的优点,即允许从随时间采集的不同 k 空间数据生成线圈灵敏度图,并且更适合使用时空正则化的更复杂重建方法。
2.2 Cartesian FSE
使用Cartesian编码的分段 FSE 采集是体积成像的主力军(即在每个重聚焦脉冲后采集每行 k 空间),具有出色的非共振鲁棒性和解剖精确性。虽然这使得 FSE 对于身体 ASL 和高分辨率 ASL 特别有吸引力,但如果需要大体积覆盖,采集时间太长是主要限制因素。
使用具有选择性激发的缩小视野 (FOV) 可以证明基于体积的Cartesian编码对肾脏成像的好处。与Cartesian网格上的螺旋重新排序、可变密度采样与身体的压缩感知重建相结合,能够实现更省时的采集,这在脑成像也得到了证明。
2.3 径向轨迹
尽管常规轨迹(例如,2D/3D EPI 或螺旋)在快速覆盖大量 k 空间上非常有效,但它们通常具有固定的空间/时间分辨率,并且受到由于非共振效应和运动造成伪影的影响。径向 k 空间轨迹,通过不同方向的中心一次获取一条 k 空间,采样较少的 k 空间点,允许在使用黄金比例采样时对重建的空间和时间分辨率进行回顾性选择;本质上对运动具有鲁棒性;不会出现明显的失真、模糊或信号丢失伪影;并容忍相对较高水平的欠采样,特别是与先进的重建技术结合使用时(见下文)。
径向轨迹已被广泛用于 ASL 血管造影(见下文),最近用于评估速度选择性 ASL 的标记效率。然而,也探索了一些新方法在 ASL 灌注成像中的用途。在使用放射成像和 ASL 的联合血管造影和灌注 (CAPRIA) 方法中, PCASL 准备之后是连续的黄金比例读出。使用早期时间点的少量径向辐条重建动态血管造影图像时,标记的血液仍然存在于动脉内。这导致较高的时间分辨率和欠采样,但血管造影信号的稀疏性和高 SNR 意味着仍然可以重建高质量的图像。使用相同的原始数据,一旦标记的血液到达组织,就可以从稍后的时间点重建灌注图像。
黄金比例读出也可以与时间编码的 ASL相结合:这意味着需要更少的激发脉冲来跨越一系列有效的标记后延迟,从而允许使用更高的翻转角,而不会导致过度的信号衰减。除了时间编码的平均噪声优势之外,还提高了 SNR。尽管可能比单独获得的血管造影和灌注成像更节省时间,但仍需要进一步研究来完善这些技术并在临床队列中对其进行测试。
2.4 心脏触发
脑供血动脉中血流速度的可变性会影响 ASL 标记效率(在 CASL 和 PCASL 中)和动脉通过时间。这些效果已经在脉冲、伪连续和速度/加速度选择性 ASL 中的心脏门控中进行了测试。例如,与舒张期相比,在收缩期触发脉冲 ASL (PASL) 标记模块时,发现更短的到达时间和高 16% 的灰质 (GM) 灌注信号,尽管信号在长 TI 时相似。与 PCASL (25%) 相比,速度选择性 ASL (36%) 和加速度选择性 ASL (64%) 在整个周期中的信号变化更大。同样,通过触发在血管选择性 ASL 中发现稳定性增益。
一项PCASL 研究了触发标记期结束到具有长标记持续时间(> 7 秒)的特定心跳阶段,并发现体内平均 ASL 信号及其稳定性没有显著差异。然而,第二项研究使用共识文件中建议的参数测试了非触发与心脏触发的标准 PCASL 序列。非触发 PCASL 序列在单次采集中显示大血管附近的信号波动,在分段采集中也显示出更多伪影,而心脏触发序列表现出更高的时间 SNR。
心脏触发以增加等待下一个心脏触发时序列中的空载时间(dead-time)为代价来提高稳定性。触发器应该应用于标记的开始,因为触发的读出会导致采集之间的标记后延迟 (PLD) 差异,从而导致标记和控制条件之间静态信号减法的不完整。
2.5 建议
由于其高效率和 SNR 以及实现空间均匀背景抑制的能力,ASL 继续推荐使用分段 3D 读出方案。在可用时(例如,对于Cartesian轨迹),也建议使用具有相对较低加速因子(例如,2 或 3)的并行成像,特别是与 CAIPIRINHIA 等低 g 因子方法结合使用时。我们鼓励在用于临床研究应用之前进一步开发和验证这些新技术。目前,仍没有足够的证据推荐在 ASL 中普遍使用心脏触发。
3 图像重建和处理的进展
3.1 图像重建技术的进展
ASL 灌注成像具有一些固有特性,使其非常适合使用压缩传感方法进行加速和重建。特别是,通过利用平均值的稀疏性或使用总广义变化约束结合时间相关的 CAIPIRINHA 采样模式,压缩感知在应用于 ASL 差异图像时表现出良好的性能。通过利用具有不同标记持续时间和标记后延迟时间的图像之间的冗余(时间稀疏性),可以进一步改进多延迟 ASL 图像。例如,为灌注模型构建了一个完整的字典,并使用稀疏获取的 ASL 信号。这有助于拒绝灌注信号模型无法描述的噪声和运动伪影。
3.2 降噪
已经使用图像处理技术开发了许多策略来提高 ASL图像的SNR。空间平滑是 MRI 中抑制随机噪声的常规程序,经常用于 ASL。然而,这会进一步降低已经很低的空间分辨率并模糊组织类型之间的灌注差异。这可以通过使用小波去噪或通过空间内核作为部分容积校正方法来部分解决。高通滤波可以去除时间噪声,因为在标记-控制采集中编码的灌注信号位于高频带。
由生理波动或受试者运动引起的异常值是 ASL MRI 的主要挑战,尤其是由于样本数量有限。尽管没有考虑空间信息,稳健拟合可以解决体素级别的异常值。在计算最终的 CBF 图之前,引入了几种经验算法来去除异常体积或切片,这可以根据 CBF 时间序列中的运动参数和变化或使用 M 估计器来识别。自适应异常值清理算法(参见图 2)可以根据每个剩余体积与当前平均图像的相关性来识别异常值。这种方法可以通过使用结构信息正则化、使用先验引导的切片范围的自适应异常值清理方法,或通过考虑相对运动来改进。
图2 处理过的可卡因成瘾患者的 ASL CBF 图像。
(A) 未进行异常值清理;
(B) 使用原始自适应异常值清理算法;
(C) 使用先验引导切片异常值清理算法。在这种情况下,异常值清理提供显著 CBF 质量改进。绿色框和红色箭头用于标记具有显著 CBF 差异的地方。
或者,可以在生成的 CBF 和/或动脉通过时间 (ATT) 图上使用空间先验以减少异常值的影响,或者可以使用全广义变化正则化时空滤波算法直接对原始 ASL 图像进行去噪。
另一种对 ASL 数据进行去噪的策略是将信号分解为分量,然后回归出“噪声”分量。一种方法是使用手动或自动成分分类的独立成分分析(例如,通过评估空间/时间变化是否与预期的灌注信号匹配),从而提高 SNR 和可重复性(图 3)。类似地,基于分量的噪声校正方法从不感兴趣的噪声区域中提取主分量,可以作为一般线性模型中的协变量,提高灌注信号的稳定性。或者,低秩和稀疏分解可以将 ASL 图像序列分离为缓慢变化的灌注和空间稀疏噪声分量。
图3 基于独立成分分析的去噪:来自 Carone 等人研究的一些示例数据。
使用 FSL FIX 去噪之前(顶行)和之后(底行)。在这项针对急性卒中患者的研究中,在 4.5 分钟内获得了 5 个不同 PLD 的 ASL 数据。上面的每张图像都显示了在单个 PLD(6 个标记-控制对)进行运动校正后的平均减法图像,其中去噪效果最为明显。这种方法可以显著减少运动和其他伪影,例如重影。
最近,深度学习已被用于在 ASL中同时进行去噪和分辨率改进,并且可以在不牺牲 CBF质量的情况下显著减少采集时间。有研究还提出使用自动编码网络的无监督深度学习 ASL 去噪算法,减少生成大量训练数据的负担。深度卷积神经网络已被用于提高平均数量较少的多时间点 ASL 的图像质量,在对中风患者的 ASL 数据进行测试时,其准确性比传统平均方法高 40%。不同的 ASL 采集策略会引入不同的噪声模式,因此有必要全面评估从一种类型的 ASL到另一种ASL或者从一种群体到另一种群体的能力。然而,重要的是要注意对功能 ASL 图像不要“过度去噪”,因为有时激活本身与被识别为噪声的成分相关,并且抑制过多的时间成分可能会增加虚假地功能连接。
3.3 部分容积校正
ASL 空间分辨率通常远低于皮质厚度(平均值~2.5 mm 与 4 × 4 × 4 m m3 的典型 ASL 分辨率)。因此,在大脑浅层区域,单个体素很可能包含 GM、白质 (WM) 和脑脊液 (CSF) 的混合物,这被称为部分容积 (PV) 效应。鉴于 GM 灌注大约是 WM 灌注的 2-5 倍,PV 将对 CBF 量化产生很大影响。在 ASL 中,通常主要分析GM-CBF。 PV(部分容积) 效应带来了 2 个问题:
1)实际 GM 含量在名义上的“GM 体素”中仍然是可变的,导致潜在的 GM-CBF 被低估;2) GM 空间分布因受试者而异,导致潜在的评估偏差(图 4)。PV 效应的重要性在纵向和横断面研究中增加,其中皮质厚度随时间和组间变化。目前已经提出了几种算法通过使用分割结构图像获得的GM 和 WM来校正体素水平的 PV 效应。这些算法要么假设局部均匀的 GM 和 WM CBF,利用 GM 和 WM 中的不同动力学(以及空间正则化),要么使用 GM 体积作为统计分析中的协变量。
图4 使用 3 名受试者证明 ASL 中对 PVC 的需求:(1) 健康成人,(2) 患有萎缩的老年人, (3) 患有单侧梗塞的老年人。
(A)个体空间结构 T1 加权图像(T1w)。
(B,C)T1w 图像以红色覆盖,带有 GM 组织分割。将 GM 分割平滑到 ASL 图像的分辨率,以表达 ASL 图像的每个体素中 GM 的部分体积。然后在 (B) 50% 和 (C) 70% 处对该 GM 图像进行阈值处理,以创建 GM 含量高于阈值的体素。 GM 图像上的 70% 阈值通常用于计算 GM 中的平均 CBF。这些图像表明,特别是在临床病例和浅层皮质区域中,只有一小部分 ASL 体素包含足够的 GM 以通过 GM CBF 计算的阈值,从而在所得的平均 GM CBF 中引入空间偏差。因此,建议使用 PVC 来获得校正的 GM CBF 值,并将其与 50% 阈值 GM 模板结合使用,以计算平均 GM CBF,从而获得合理的空间覆盖,同时最大限度地减少 PV 影响。
GM,灰质; PVC,部分容积校正。
GM 和 WM质量以及配准、失真校正和分辨率误差也会影响 PV( 部分容积)校正。然而,这些错误将对使用 GM-mask的非 PV 校正 GM-CBF 评估产生类似的影响,或者使用来自反转恢复或类似读出序列的组织分类的替代方法。需要注意的是,部分容积效应是一种方法论伪影。对其进行校正后,研究人员可以将灌注和 GM 体积的变化作为单独的影响进行检查,即使在两者同时发生变化的患者中也是如此。对于后者,GM 体积可能是统计分析中的协变量;对于前者,PV校正更为合适。这两个问题目前通常不单独解决。
3.4 建议
如果有足够的测量值,在处理 ASL 数据时,我们建议使用运动校正(除非执行非常强的背景抑制)并考虑至少一种去噪技术(例如自适应异常值清理或基于组织的方法)。对于专注于特定组织类型(例如 GM)的研究,强烈建议将部分容积校正作为附加分析,特别是如果参与者或队列之间预期组织体积存在差异(例如,由于萎缩)。
4 灌注之外的其他参数
ASL 还可用于量化其他血流动力学参数,例如:动脉通过时间、动脉血容量、动脉和静脉血氧合以及氧消耗的代谢率。
4.1 血氧和耗氧量
可以创造性地应用自旋标记法测量静脉血氧饱和度(文献中常用SvO2或者Yv),据此可以随后估算出氧摄取分数(OEF)和脑氧代谢率(CMRO2)。这 3 个参数都是大脑健康和功能的重要指标,并且经常在疾病状态下受到干扰。
一种估计 Yv 的方法是首先测量静脉血的 T2,然后使用经验或理论关系将其校准为 Yv,因为血液 T2 与血氧分数直接相关。然后可以使用导出的静脉氧合 (Yv) 以及动脉氧合的测量值或假设值来估计 OEF(OEF 定义为提取的氧合与动脉氧合的比率)。代谢率计算为假定的动脉氧合、OEF 和 CBF 的乘积。
测量体内血液 T2 值的一种有效方法是应用 T2 加权“准备模块”,该模块由 ±90° 硬脉冲组成,其中包含一系列具有不同 TE 的重聚焦脉冲(在图像采集之前)。该方法已应用于确定冠状静脉、脑矢状窦和颈内静脉血的 T2。对于镰状细胞性贫血等异常血液成分,基于 T2 的血氧饱和度可能需要针对疾病进行校准。
然而,这种方法的主要挑战是仅从静脉血中分离信号,而不会受到组织、脑脊液或其他血管隔室血液的污染。自旋标记方法提供了一种自然分离血管信号的选择,因为内在减法可以消除来自不需要体素成分的信号。
自旋标记下的 T2 弛豫 (TRUST) 是第一个针对静脉血信号的自旋标记技术。TRUST 通过将反转带放置在成像面板上方(而不是下方)来修改脉冲 ASL,以反转向下流动的静脉自旋。控制-标记减法产生高信号仅在成像板内的中到大尺寸静脉中出现。T2 准备模块或 FSE 读出会生成多个回波以适应静脉血 T2,最终在短扫描时间内产生高 SNR 的全局氧合测量。
提取氧气和组织消耗的定量成像 (QUIXOTIC) 方法通过采用速度选择性脉冲序列来标记从毛细血管加速进入静脉系统的血液,从而扩展了 TRUST。这允许在逐个体素的基础上对静脉血进行 T2 测量,并生成 Yv、OEF 和 CMRO2 图。然而,QUIXOTIC 受到低 SNR 和 CSF 污染引入误差的限制。速度选择性激发和动脉无效 (VSEAN) 技术通过应用独特的速度选择性激发来直接从缓慢移动的静脉自旋获取信号,从而改善 SNR 并减少 CSF 污染,减轻限制。
4.1.1 建议
TRUST MRI 使用简单的自旋标记方法来可靠地测量全局静脉氧合,建议用于大多数应用。由于高信噪比、短成像时间和简单的数据分析方法,它很容易转化为临床和研究环境。此外,TRUST 已经被广泛的测试和验证,包括跨多个站点和多种疾病。更先进的方法,如 QUIXOTIC 或 VSEAN,可以进行体素范围的氧合测量,并反映下一代自旋标记氧合方法。然而,鉴于有限的 SNR 和复杂的采集和分析策略,这些目前是为专业场景中的专家用户保留的。
4.2 磁共振指纹成像ASL技术
图像的动态时间序列,其中采集设置以伪随机模式变化,可用于识别组织的潜在 MR 参数(例如,其弛豫时间)。每个体素的组织 MR 参数的特定组合为该特定采集产生独特的动态 MR 信号,并且可以在模拟中预测该信号。在 MR 指纹打印技术中,参数拟合是通过从预先计算的数据库或“字典”中识别与观察到最匹配的信号来执行。与观察最相关的条目对应于 MR 参数的适当组合。
指纹方法的关键特征和优点是从给定信号产生联合参数估计,并且只要它们的影响与感兴趣的参数不相关,对杂散信号具有鲁棒性。变量的联合参数估计,如 T1 和 T2 弛豫,消除了来自单独测量或假设的配准和其他偏差。字典匹配过程通常非常快,但生成字典是一个计算量很大的过程,并且可能导致参数估计的粗粒度。
在定量 ASL 的背景下,指纹成像是一种吸引人的策略,原因有几个。首先,ASL 本质上是低 SNR,并且指纹识别对噪声的鲁棒性提供了主要优势。其次,ASL 量化需要先测量或假设多个参数。如果假设,这可能会在测量中引入偏差,或者如果单独测量这些附加参数,则可能会引入配准误差和额外的扫描时间。相比之下,ASL 指纹识别已通过收集单个时间序列的 PCASL 准备图像成功实现,其中标记持续时间根据伪随机、预定的时间顺序变化,并且 PCASL 准备序列的控制/标记条件也是随机的。标记后延迟不是必需的,因为当减小翻转角用于保留来自先前 TR 的一些 ASL 信号时,控制 PCASL 周期用作建模的可变标记后延迟。从这个时间序列中,可以通过将信号与预先计算的字典匹配来估计多个参数,通常是 T1 弛豫、灌注、动脉血容量和动脉到达时间。
在几项研究中,结合字典匹配的 ASL 指纹识别能够估计感兴趣的血流动力学参数,与更成熟的 ASL 技术具有良好的一致性。然而,近期深度学习方法已被证明是字典匹配的强大替代方案。虽然该方法的数据采集部分保持不变,但参数估计部分可以使用神经网络回归更有效地完成(图 5)。
图5 使用神经网络进行 ASL 指纹识别的示例工作流程。
合成指纹信号由组织参数的组合创建(灌注、血量、延迟到达时间、磁化传输率、T1 和翻转角)。这些用于训练一组神经网络,产生感兴趣的参数作为其输出。一旦经过训练,每个网络都可以在给定实验指纹时间序列的情况下估计潜在的组织参数。该图包含使用合成参数图的模拟结果。
4.2.1 建议
ASL 指纹识别是一种很有前途的技术。字典匹配已被证明是估计参数的有效方法,并且神经网络回归已被证明在处理速度和粒度方面具有明显优势。但是,ASL 指纹采集和处理方法仍在不断发展,因此我们暂时不提出具体的设计建议。
4.3 ASL 血管造影(ASL-MRA)
ASL 血管造影 (ASL-MRA) 与传统的对比增强 MR/CT 方法相比具有许多优势:该技术允许血管选择性标记(特别适用于评估动脉供应,例如动静脉畸形/瘘管),并且在时间和空间分辨率方面具有出色的灵活性,因为可以重复标记和相关的成像读出,直到达到所需的分辨率,不受对比剂成像的限制。
然而,为了实现高空间分辨率,通常使用整个扫描时间来获取大型 k 空间矩阵,而无需进行信号平均。当针对多条动脉使用血管选择性标记时,总扫描时间会变得非常长。因此,应考虑使用加速技术:例如,欠采样的黄金角(golden-angle stack-of-stars)和 3D 径向“koosh-ball”采集,以及高级图像重建技术,如 CS 和 k 空间加权图像对比度。幸运的是,ASL-MRA 非常适合欠采样重建,因为它在减法后的图像域中具有高度稀疏性,特别是当血管选择时。
PASL 和 PCASL 均可用于 ASL-MRA。具有 Look-Locker 读出的 PASL 已经在多项研究中证明其临床实用性,并且特别擅长可视化近端动脉的早期流入阶段。然而,血管选择性 PASL 存在一些困难(见下文),这使得 PCASL 成为血管选择性 MRA 的首选方案。 PCASL 也可以与减法技术相结合,以可视化血液流入。
相比之下,对于静态 3D-MRA,PCASL 的长标记持续时间更有利于可视化整个动脉树,PCASL 和 PASL 的混合有助于最大限度地减少因新鲜未标记血液流入成像体积而导致的近端血管信号损失。最近,通过基于傅里叶变换的速度选择性饱和脉冲序列,已证明速度选择性静态 3D-MRA,它在采集之前将通带中的流动自旋和饱和带中的静态自旋设置为非减法方法。
ASL-MRA 的常用读出是基于 3D 梯度回波序列。然而,使用 Look-Locker 读出,当翻转角较高时,重复激发脉冲会强烈衰减 ASL 信号。这可以通过使用平衡稳定态自由旋进读出(图 6)来缓解,该读出将横向磁化循环用于下一次激发,或使用分段 EPI 读出来减少激发脉冲的数量,同时使之间的间隔射频脉冲更长。然而,偏共振效应会导致平衡稳定态自由旋进的血管描绘丢失,因此需要高 B0 均匀性(例如,使用小的 FOV 或较低的 B0 场强),并且分段 EPI 可能会由于强烈的脉动血流而遭受重影,通常在大脑中动脉的 M1 部分,尽管使用右-左相位编码时这种情况会减少。
图6 来自血管编码动态血管造影序列示例,该序列通过平衡稳态自由进动读出获得。
颜色显示血液信号来自哪个近端动脉:RICA/LICA 或 RV A/LV A RICA/LICA,右/左颈内动脉; RV A/LV A,右/左椎动脉
ASL-MRA 可以通过共享标记模块在单个序列中与灌注成像相结合,提供大血管和微血管信息:除了 CAPRIA(前面描述)之外,时间编码 PCASL 可以与分段 EPI 4D-MRA 读出相结合,最大限度地减少为单独的灌注加权读出所需的激发脉冲数和保持磁化强度。
4.3.1 建议
对于静态 3D-MRA,建议使用 PCASL(最好使用 PASL 混合标记)来可视化整个动脉树。对于 4D-MRA,带有 Look-Locker 读出的 PASL 可以很好地显示流入大脑的动脉血。对于血管选择性 MRA,PCASL 是避免与面板选择性 PASL 相关困难的首选方案。使用 PCASL 时,应考虑流入减法以可视化早期流入阶段。应考虑将欠采样采集与高级图像重建相结合,以最大限度地减少扫描时间。利用平衡稳定态自由旋进或分段 EPI(系数为 3-7)的读出有助于减轻 ASL 信号的饱和。然而,在 B0 不均匀或脉动重影存在问题的情况下,建议使用具有低翻转角的破坏梯度回波序列。
4.4 ASL fMRI
虽然受到低 SNR 和采集速度的限制,早期工作表明相较于血氧水平依赖 (BOLD) fMRI,基于 ASL 的fMRI提供了几个重要的优势,包括定量测量、时间稳定性(不受困扰 BOLD fMRI 的 1/f 噪声的影响)。这些功能使其更适合长时间的 fMRI 实验范式(例如,持续时间大于一分钟的阻塞设计),例如应用于药理学 fMRI 或研究睡眠剥夺等条件时。或者在极端情况下,控制和激活条件的图像相隔 30 天采集,仍然可以获得运动皮层的可靠激活图。
基于灌注的 fMRI另一个优势是 CBF 和脑血容量变化更具体于发生神经活动的实质,而不是引流静脉。此功能使其对特定层的 fMRI 特别有吸引力,能够识别 BOLD 成像无法区分皮质之间的活动。
ASL 的优势还体现在一些在fMRI高磁敏性引起的静态场不均匀性区域,例如眶额皮质、杏仁核或内侧颞叶,这些区域容易出现BOLD 信号丢失,因为 ASL 不依赖于磁化率对比,因此可以使用具有低 T2* 灵敏度的序列来获取 ASL 图像。这一特点使其对口语的 fMRI 研究具有吸引力,因为它对与语音相关的运动和易感性混淆的敏感度低于 BOLD。
基于 ASL 的 fMRI 序列通常避免获取分段读出以确保足够的时间分辨率。除了传统的 2D 多层 EPI 读出外,3D 螺旋堆栈和 3D-GRASE 读出是在单个标记/控制周期后收集所有 k 空间的有效方法。最近提出一种有吸引力的采集策略,使用具有弛豫增强 (RARE) 读出和 CS 重建的伪黄金角螺旋堆叠 3D 快速采集,产生高空间分辨率的时间平均 CBF 图和低空间分辨率测量的CBF 波动。最近,速度选择性标记脉冲已被证明可以实现更快采样和提高灵敏度,并且可以更广泛地用于基于灌注的 fMRI。
ASL 还发现了一些用于评估静息态功能连接的用途。早期,通过用 ASL评估 CBF 信号的波动,可以检测感觉运动网络的连通性。从那时起,为了识别静息态网络而进行的几项研究,应用了不同的分析方法,例如基于种子的连接、独立成分分析和全脑体素水平连接,发现了与静息态 BOLD 研究中观察到的相似的大脑网络。与任务激活研究的情况一样,尽管 ASL 图像的空间分辨率较低,但用 ASL 测量的静息态功能连接可能比 BOLD 提供更好的静息态网络定位。 ASL 较低的时间分辨率并不是一个缺点,因为静息态连接是基于低频信号波动的相关性。
4.4.1 建议
基于 ASL 的 fMRI 可以通过将标记方案与快速体积读出(例如螺旋堆栈)与并行成像加速方案相结合来实现。背景抑制和时间序列去噪技术(参见前面的部分)对于检测激活非常有帮助。速度选择性 ASL 已被证明是有利的,因为它允许更快的采样,给定可忽略的延迟到达时间。基于 ASL 的技术在特定层的 fMRI 中具有很大的前景。
5 血管选择性 ASL
通常,主要关注的是特定组织区域的血液灌注总量,但在某些情况下,还需要知道血液信号源自哪条动脉。与其他灌注成像模式(例如,正电子发射断层扫描、单光子发射计算机断层扫描)相比,ASL的一大优势是能够对特定动脉的灌注区域进行成像。由于脑血管系统的解剖变化和脑血管疾病引起的血流动力学变化,脑供血动脉的灌注区域表现出广泛的变异性。局部灌注成像的临床应用包括评估狭窄闭塞性疾病的侧支血流模式和识别缺血性病变、动静脉畸形或肿瘤的血液供应。
5.1 面板选择单动脉标记
一些用于血管选择性的原始技术限制了 ASL 反转脉冲作用的空间区域,因此一次只能标记单个血管。最常见的方法是使用传统的面板选择性反转脉冲,但以仅覆盖感兴趣动脉的方式调整其角度。然后必须使用有效的标记后饱和度来消除有角度的标记脉冲对成像区域内组织磁化强度的任何影响。然而,将面板仅定向在曲折的感兴趣动脉是具有挑战性的。此外,如果只能覆盖有限的血管段,产生的标记血液量相对较小,结果图像的 SNR 受损,灌注量化具有挑战性。
5.2 超选择性方法
基于 (P)CASL 的血管选择性标记通过使用垂直于主标记梯度轴的二级梯度避免了基于面板选择性 PASL 方法的一些缺点。如果梯度在标记期间动态旋转,而不是以连续方式应用此梯度,则可以实现较小的标记区域。使用 CASL 的早期血管选择性工作基本上创建了一个不垂直于流动方向并围绕目标动脉旋转的标记平面,这样只有流过该动脉的自旋才会经历作为 CASL 基础的绝热反转。
通过在构成平衡 PCASL 标记序列的各个 RF 标记子脉冲之间插入平面内梯度脉冲,可以将类似的想法应用于 PCASL 方法(参见图 7)。该效应是由它们沿平面内梯度方向位置确定的自旋相位分布。将标记序列中各个脉冲的相位与特定血管位置的自旋相位匹配,可以创建“标记条纹”,通过类似于非选择性 PCASL 的绝热反转来标记流经该位置的自旋。相位累积的周期性意味着如果平面内梯度脉冲每次都相同,则这些条件将在标记平面内的多个条纹处得到满足。在超选择性 PCASL 中,平面内梯度在 PCASL 序列中的 RF 脉冲之间以不同的增量旋转(以连续或伪随机方式),并且调整 RF 相位,使得只有流过平面中 一个位置的自旋将绝热反转。
图7 血管选择性 PCASL 方法:超选择性(顶部)和血管编码(底部)PCASL 的脉冲序列图(左)非常相似。
对于超选择性标记,平面内梯度光点(Gx,Gy)以连续或伪随机方式在每个 RF 脉冲中旋转,生成单个标记“点”(中)。 RF 虚线表示控制条件。对于血管编码,梯度光点以一致的方向应用,在标记平面上创建标记带和控制条件,这些条件在多个编码周期中变化。对于超选择性标记,每个感兴趣的动脉分别标记(中),然后组合(右)。对于血管编码,每个编码周期都会在标记或控制条件下生成具有不同动脉组合的图像,这些图像在后处理中组合以识别来自每条动脉的信号。这里使用颜色来表示血液信号的来源(红色 = 右颈内动脉;绿色 = 左颈内动脉;蓝色 = 右椎骨;洋红色 = 左椎骨)。 PCASL,伪连续动脉自旋标记。
平面内梯度光点的幅度决定了有效 “标记点”的大小,必须选择作为标记效率/对运动不敏感(较大的点)和标记其他附近动脉的可能性(较小的点)之间的折衷。此外,标记平面需要定向为大致垂直于动脉,与动脉的直线部分相交,并且不与执行相关成像的组织相交。
超选择性 PCASL在患有一系列脑血管疾病患者中表现出较好的结果,包括狭窄闭塞性疾病和动静脉畸形。最近关于校正偏共振效应和脉动的工作可能会进一步提高鲁棒性。
5.3 血管编码
鉴于有限的扫描时间,具有更高时间效率的标记方法是首选,即可以通过脉冲或(伪)连续标记方法同时标记多个供血动脉的方法。在这种类型的方法中,灌注图像是在几个“编码”步骤中获取的。如前所述(参见图 7),包括 PCASL 标记平面内沿一致方向的附加梯度脉冲,以及相关的 RF 相位调制,在平面内创建空间标记带,而不标记其他区域的血液。动脉编码是通过在一系列读出上标记标记平面内不同子区域来实现的。基于 PASL 的方法涉及到将标记平面定位在每次覆盖超过一条动脉的位置,尽管定位标记平面以覆盖曲折的动脉仍然存在困难,但通常首选基于 PCASL 的方法。
在几个读出中,供血动脉被标记和编码不同,例如,反转(标记)和未受干扰(控制)动脉磁化分别编码为 -1 和 1。组织信号总是编码为 1,可以构建一个编码矩阵来描述在成像切片的所有编码步骤中获取的信号,例如:
其中测量的信号向量y = [y1 y2 y3 y4 ]T 和 yi 是在步骤 i 中获取的信号;信号源向量 x = [L R B T ]T; L、R、B 和 T 分别是来自左颈动脉、右颈动脉、基底动脉和脑组织的信号。观察到的信号 (y) 是贡献 (x) 的线性组合,由编码矩阵 A 混合,由 1 和 - 1 组成。然后可以通过 x = A-1y 计算来自每个供血动脉的贡献,其中A−1 是编码矩阵 A 的逆矩阵或伪逆矩阵。
使用 Hadamard 编码矩阵中的列(元素为 1 或 - 1)来构造编码矩阵,如上图所示,这样可以最大限度地提高编码和 SNR 效率。这导致血管编码的 ASL,有时被称为 Hadamard 编码的 ASL,其不应该与基于 Hadamard的时间编码方法相混淆。为了区分 N 个血管区域,在总采集时间相同的情况下,与单独标记每个供血血管相比,使用 Hadamard 编码的每个供血动脉的 SNR 提高了根号N倍。
由于供血动脉几何形状的变化和扫描仪硬件的限制,虽然已经提出了一些优化编码的自动化方法,但Hadamard 编码方案可能并不总是可行的,或者计划/计算过程可能很慢。标记参数的优化还可以改进选择处于标记或控制条件下动脉的分离。
由于例如标记位点的 B1 变化或非共振等场强不均匀性,供血动脉的实际标记状态可能会偏离设计值(例如,如果信号饱和,则编码为 0),应根据数据进行估计准确解码血管区域信息。这可以通过 k 均值聚类和线性分析来估计每个灌注区域中 ASL 信号的编码标记效率,或者通过使用具有更高准确性的贝叶斯来完成。
血管编码 ASL 的一些应用可用于评估动静脉畸形的血液供应,包括检测/评估侧支循环,或产生血管编码血管造影。
5.4 建议
PCASL 是血管选择性 ASL 的推荐方法。在血管编码和超选择性标记方案之间进行选择时,扫描的目的应指导决策:当需要深入了解所有(或主要)流动区域时,使用 Hadamard 方案的血管编码标记是最有效的方法,并会产生最高的信噪比。然而,当对单个或几条动脉血流区域特别感兴趣时,特别是在这些动脉位于颅内或属于不寻常血管解剖结构的情况下,超选择性标记是首选方法:它允许标记平面为每条动脉进行最佳定位,并且可能是最简单的实施方式。然而,在这两种方法中,在尝试量化 CBF 或混合灌注分数时,必须考虑不完美的标记效率。
6 ASL中的深度学习
机器学习 (ML) 应用在医学成像领域呈急剧上升趋势。应该特别注意深度卷积神经网络,它在医学图像分析任务中表现出优异的性能。这些方法在不断增长的公共数据共享计划中进一步得到支持,这使得构建大型多中心数据集成为可靠训练和验证机器学习模型的关键。从历史上看,由于供应商实施差异和缺乏协议标准化,多中心 ASL 数据集一直难以组合。之前的共识文件有助于解决这些问题,目前将参数符号标准化作为新的 ASL 脑成像数据结构 (BIDS) 扩展和灌注成像开放科学倡议的一部分努力也旨在提高协调性。
这是一个快速发展的领域,我们预计未来几年会出现许多新的创新。到目前为止,使用 ML 方法通常可以解决 4 种主要类型的任务:参数估计、图像去噪(如上所述)、预测具有不同对比度的图像以及直接预测诊断或疾病严重程度。
6.1 ASL 量化
DL 提供了一种强大的方法来解决复杂的非线性逆问题,例如 ASL 提出的问题,特别是在指纹识别应用中(如上所述)。在 ASL 指纹识别的情况下,神经网络回归可用于独立估计多个参数,每次一个,而无需假设其他参数的值。
一般策略是基于物理模型、脉冲序列参数(例如,标记持续时间、PLD、TR)和许多参数组合生成合成信号数据库。然后使用这个信号数据库来训练一组神经网络以输出所需的参数。一旦经过训练,每个网络都将观察到的信号作为输入,并产生参数估计作为其输出。或者,来自高质量数据集的ASL 数据,其中基础参数是先验已知的,可用于训练神经网络,而不是使用来自 Bloch 模拟的纯合成数据。
训练神经网络需要一个大型的信号数据库,合成和存储的计算成本很高。但是,网络只需要训练一次。训练后,输出的计算(即参数估计)非常快。这种方法比字典学习提供了一个重要的优势:允许参数估计的粒度更细,而字典条目是在较粗略的参数值网格上计算的,因为字典的大小随着网格大小和希望估计的参数(维度)的数量呈指数增长。
在 ASL 方面,该策略已被证明可以非常有效地从 ASL 指纹估计血流动力学参数,尽管在某些情况下指纹对灌注和其他血流动力学参数的敏感性可能会受到限制。优化指纹读出策略以最大限度地提高灌注灵敏度(使用客观的灵敏度度量,例如 Cramer-Rao)对于获得可靠估计至关重要。因此,除了 T1 弛豫时间和有效翻转角外,还可以可靠地估计灌注、动脉通过时间和动脉血容量,与标准测量值具有良好的一致性。
6.2 用于诊断的机器学习和 ASL
ML 和 DL 为我们提供了比在特定病理相关区域进行简单评估更详细地研究病理灌注变化的区域和体素的方法。ASL 通常使用两种不同的方法:
(i)基于图谱评估解剖区域中的局部平均 CBF,然后在这些区域定义的向量空间中计算,例如,将健康对照与重度抑郁症患者分开;
(ii) 使用基于神经网络的 DL 或使用特征空间缩减方法(如 PCA)和传统的 ML 算法(如支持向量机)处理完整的体素 CBF 图。尽管基于 DL 的方法可以实现更高的性能并且不受预定义解剖区域的限制,但此类方法存在许多缺点:训练需要更大的数据集。它们存在可解释性问题,可以提示基于非灌注的伪影,例如运动,并且计算要求更高。然而, ASL 协议的敏感性是主要问题:采集参数的变化(通常存在于 ASL 中)可能会使性能良好的机器学习方法在另一个采集协议上无用。
尽管出现了 ML/DL 应用的第一个例子,但它们仍然是在没有外部验证的情况下对来自单个队列的有限数量的患者进行的试点研究,因此远未在临床研究中得到更广泛的采用。标准化图像处理以减少数据的不同中心差异是收集更大数据集的一种方式,这对于 ML 和 DL 训练都是必需的。
6.3 建议
尽管 ML 提供了巨大的希望,但该领域仍在不断发展。我们预计这些 ASL 技术的持续开发和验证,特别是那些对站点、扫描仪和采集协议之间的差异具有鲁棒性的技术。
7 超高场:7T 中的 ASL
ASL 应该受益于更高的 B0 场强,这得益于内在 SNR 的增加和更长的血液 T1 弛豫时间。SNR 的大幅提升可以换取更短的扫描时间、更高的空间分辨率和/或增加对低灌注水平的敏感性(例如,在大脑WM中)。图 8 显示了 3T和 7T 收集的 PCASL 图像,可以看到SNR提高的潜力。然而,许多技术挑战阻碍了 ASL 在超高场 (UHF) 的广泛使用。其中包括:(i) 主磁场 (B0) 不均匀性增加; (ii) 发射RF (B1+) 不均匀性增加,通常覆盖范围有限; (iii) 增加功率沉积; (iv) 更快速的 T2/T2* 衰减; (v) 增加生理噪音。
图8 对同一被试,使用相同协议在 3 T 和 7 T 下生成的示例 PCASL CBF 图(以 mL/100 g/min 为单位)
在此分辨率(2 × 2 × 4 mm)下,3 T 数据相对嘈杂,但7 T 时的 SNR 增加,显著改善图像质量。然而,为了在 7 T 下获得合理质量的灌注图像,标记平面必须位于大脑内以避免严重的 B0 和 B1 不均匀性,这意味着不可能覆盖整个大脑。此外,标记持续时间必须保持较短(1400 ms),并且只能使用预饱和来抑制背景,因为额外的反转脉冲会超过 SAR 限制。成像参数:PLD = 2000 ms,TR = 4000 ms,读出方案 = 2D 多层 EPI,切片数 = 10,TE = 13 ms,并行成像 (GRAPPA) 因子 = 2,扫描时间 = 5 min。
UHF (超高场)ASL 的许多早期工作都使用脉冲 ASL 准备和仅对大脑的有限区域进行成像。最近利用优化的 PASL 反转脉冲以及电介质和同时多层 EPI 的工作,已证明了该方法能够提高标记效率、大脑覆盖率和时间分辨率。这种技术显示出巨大的前景,特别是对于高空间分辨率功能成像,例如层流 fMRI(laminar fMRI)。尽管很有希望,但在 UHF 下 PASL 的主要限制是标记只能发生在由发射RF线圈定义的空间区域内:在 7T 时,这通常是一个仅头部发射线圈,这与在较低场强下使用线圈不同。因此,在大脑覆盖范围和头部线圈内可用于生成标记血液的剩余区域之间进行权衡,这直接影响可实现的 SNR。
PCASL 有可能克服这个障碍,因为只有薄的标记平面才能必须位于发射线圈的敏感区域内:因此,在保持全脑覆盖的同时,仍然可以生成长时间的标记血液。然而,PCASL 对上述所有技术问题也特别敏感,因此该领域的大部分工作都集中在解决这些问题上。B0 不均匀性可以使用预扫描来估计每个血管位置的场偏移来减轻,然后可以使用 PCASL 脉冲之间的横向梯度光点或相位校正方案来校正。使用高介电常数可以部分补偿标记区域中降低的 B1+ 幅度,而使用 B1+ 匀场可以改善标记血管位置处的传输均匀性。这两种方法还有助于提高传输效率,减少功率沉积,特别是在应用可变速率选择性激发时,尽管这似乎仍然是一个限制因素。基于快速低角度拍摄的读出显示,有望限制 7T 时的短 T2 衰减的影响,并且可能对生理波动更加稳健。
尽管取得了这些进步,但事实证明,在 UHF 上实现 ASL 的全部理论潜力是很困难的。进一步减少功率沉积、实现最佳标记持续时间和背景抑制以及可能利用完全并行传输能力,可能有助于在未来推动这一领域的发展。
7.1 建议
当需要非常高的空间分辨率时,可以考虑使用适当优化的反转脉冲的 UHF PASL,特别是对于特定层的功能成像,尽管这在大脑下方区域变得更具挑战性。尽管 UHF PCASL 显示出巨大的希望,但迄今为止,诸如 B1 不均匀性和功率沉积等技术挑战阻碍了其实施,因此鼓励在该领域开展进一步的工作,以实现最佳标记持续时间和背景抑制,也可能利用完全的并行传输能力。