在过去的二十年间,静息态功能连接(RSFC)方法为人脑网络组织提供了新的观点。图论指标被用于阿尔茨海默病或抑郁症等脑部疾病的相关研究中,来描述健康对照和患者之间的差异。本文对临床网络神经科学相关的研究进行了概述,总结了106篇相关文章的方法学细节。
尽管静息态功能连接有着良好的前景,但目前仍有以下问题需要解决:
首先,脑网络的组成和边定义作为图论分析的基础,在不同的研究中存在很大的差异。
其次,许多研究将连接数与图等同起来,但是从临床的角度而言,这样可能会导致虚假的显著性差异。
第三,除了meta分析之外的研究使用的图论指标普遍偏少。
第四,一些研究仅仅局限在图论的一类指标上,缺乏相关的神经生物学基础,或者该类指标结果(例如,全局拓扑)与图论其他类指标的结果(例如,模块化结构)的相关性分析。基于这些问题,我们进行了网络模拟来展示特定方法学的选择对于研究的影响。最后,我们提出了如何提高研究一致性的建议[图1] ,以促进这一重要领域的进展。本文发表在Network Neuroscience上。
介绍
随着许多研究使用的指标从局部脑活动过渡到脑区之间的连接,“人类连接组学”的研究成果给功能神经成像带的研究带来了翻天覆地的变化。这场概念革命的重大目标是将大脑理解为一个负责协调复杂的行为功能网络的装置。研究功能连接的主流方法为量化不同区域之间大脑内在活动的耦合。静息态功能连接(RSFC)主要是指不同脑区 BOLD信号的低频振荡(大约0.01-0.12hz)之间的相关性。与任务态fMRI相比, RSFC数据更易于获取并且不需要设计研究任务和考虑认知负担,所以已经被用于许多人脑的功能研究之中。然而,RSFC存在许多方法论方面的不足,主要是包括对数据质量的担忧以及数据处理对结论的影响。
脑损伤或疾病的RSFC研究通常观察疾病组(例如,帕金森病)与匹配的对照组的功能连接之间的差异RSFC 研究有一些特定方法和注意事项。例如,疾病组和对照组之间功能连接总体水平的差异可能导致网络分析中假连接数的差异(参考:静息状态fMRI功能连通性网络中的比例阈值的选择),可能会掩盖有意义的组间比较。除此之外,业内越来越担忧只有极少数的研究结果是可复现的。这种担忧与对在神经影像学中开放、可重复实验的日益重视相呼应。
在本文中,我们回顾了临床神经科学中 RSFC 图论研究的现状。基于本文的主题,我们进行了两次网络模拟以展示与病例对照研究不同方法的缺陷。最后,我们推荐了最佳研究方法以提高研究之间的可比性。
我们的综述并没有直接解决许多在研究领域活跃的重要方法问题。例如,检测和校正与运动相关的伪影仍然是RSFC 研究中的核心挑战。静息态扫描的时间长度、测量次数和时段数也会影响功能连接结果的可靠性并且可能对网络分析产生影响。最后,定义大脑区域的数量和形式,也就是脑区,会对 RSFC 网络组成产生非常重要的影响。脑区分割方法多种多样,包括解剖图谱、功能边界映射和基于体素 BOLD 时间序列的数据驱动算法。本文仅专注于临床文献中RSFC 图论研究,除此之外,我们建议读者对超出本文范围的重要问题进行更具有针对性的处理。
临床网络神经科学研究文献综述
图论是离散数学的一个分支,已广泛地应用于结构和功能的脑网络研究之中。图是对象的集合,称为顶点或节点;节点之间的成对关系称为边或链接。由区域之间RSFC的估计组成的图提供了一个了解脑内在连接模式的窗口。
图 1 提供了 RSFC 研究中的最常见图论结构和指标。
本文的文献检索是为了获得代表性的神经和精神疾病的RSFC图论研究。我们专注于功能连接(FC)而不是结构连接。本文仅回顾了 fMRI 研究,所以不包括脑电图 (EEG) 和脑磁图 (MEG)。尽管 EEG/MEG 在某些方面具有重要优势,绝大多数临床RSFC研究还是选择了fMRI。此外,还有在考虑了RSFC 研究中的网络定义和空间分割。我们对 PubMed 数据库 (http://www.ncbi.nlm.nih.gov/pubmed) 进行了两次相关搜索,以找出关注精神和神经疾病中 RSFC 的图论方法的文章(有关查询的详细信息,请参阅方法)。
文献检索在2016年4月进行,共检索到626篇研究(神经疾病281 篇,精神疾病345 篇)。排除评论、案例研究、动物研究、方法学文章、电生理学方法(例如 EEG 或 MEG)、仅报告结构成像或不关注脑部疾病(例如健康的脑功能、正常衰老)。剩余106篇论文(见表1)进行进一步研究。
框1总结了本文中的重要内容,不同图论研究数据分析方法的异质性。随后本文将探讨两个在案例对照研究中解释网络分析具有重要意义的关键问题:(a)网络阈值(即,确定如何从FC的连续测量中定义“连接”)。(b)将假设与图研究的级别相匹配。对于两个问题,我们都使用网络模拟来说明这些问题对于病例对照比较的重要性。
框 1. 脑疾病功能连通性图论研究的主要挑战
1) 在RSFC研究中,图的节点和边的定义存在很大的异质性,这与定量比较和meta分析的要求很大程度上并不相符。异质性的主要来源包括大脑分区、功能连接指标(例如,完全与部分相关)、负FC估计的处理和预处理的方法(例如,全局信号回归)。此外,大部分研究中使用的图指标很少,进一步阻碍了对疾病和研究相似性的检查。
2) 许多研究使用比例阈值将连续的连接指标(例如,Pearson 相关性)转换为二进制边控制边的总数。因为疾病组可能在功能连接的数量和强度方面发生变化这种方法可能会影响研究中对脑病理学的解释。当分组在所选脑区的连接强度上存在差异时比例阈值也可以识别虚假的组间差异。
3) 许多图指标和神经生物学之间的联系普遍是被假设而不是确定(例如,神经效率)。
4) 研究假设和具体图分析之间的一致性通常是不清楚的。此外,许多研究没有考虑将一个层次(例如,全局拓扑)的发现置于另一个层次(例如,模块化结构)的背景中来研究。
在临床样本中创建可比网络
在功能性大脑网络中定义节点。RSFC 数据的图论分析从根本上依赖于节点(即大脑区域)和边(即功能连接的量化)的定义。进行网络分析的临床研究之前,研究人员必须选择一个分割方法,对感兴趣的区域和网络稳定地采样。我们的文献回顾显示,76% 的研究基于综合分区定义(即,对大部分或全部大脑进行采样),24%的研究分析了目标子网络中的连接性。此外,我们发现分割方法存在很大的异质性,范围从 10 到 67632 个节点(众数 = 90;M = 1129.2;SD = 7035.9)。事实上,虽然 25%的研究有 90 个节点(其中大多数使用 AAL 图集;Tzourio-Mazoyer 等人,2002),但所有其他分区的频率低于 5%,导致 106篇文献中至少有 50 个不同的分区方法。
几种常用的分割方法提供的脑功能区域采样广泛但并不完整。例如,最近基于大脑皮质表面的分区为皮质功能边界提供了新的细节水平。然而,如果研究人员对皮层-皮层下的连通性感兴趣,那么需要将分割的范围扩大到包括所有相关区域。每种分割方法都有各自的优缺点,有两个具体的问题:
首先,大多数研究的目标是描述全脑连接模式中的组差异,这些连接模式对图定义具有合理的稳定性。研究人员希望在同一数据集中使用至少两个分割脑区方法来确定显著性差异否因为方法的差异而产生。由于比较的网络不平等性这一根本困难很难有相同的结果,特别是诸如效率或特征路径长度之类的全局拓扑特征可能会因分割方法的不同而不同,但其他特征(如模块化或者核心节点hub)可能更加稳定。但是,将多个分割方法应用于同一数据集会成倍增加分析以及协调不一致的结果的工作量。最近证明,持久同源性(一种来自拓扑分析的方法)有可能量化跨不同分区的单个功能连接组的相似性。有望提高临床 RSFC 研究中的可重复性。
其次,分割方法的差异从根本上限制了不同研究之间的比较。我们的研究发现了不同的研究之间的脑区分割方法存在很大的异质性,这种异质性使人无法确定同一疾病的两项研究之间的差异是图形定义的产物还是有意义的发现。此外,虽然结构MRI和任务态 fMRI 的meta分析变得越来越流行,但是meta分析在目前的部分图论研究中因为分割方法的不同而无法实现。为了解决这个问题,我们建议研究人员使用统一的标准分割方法,分割方法详细见下文。同时,研究人员也可以通过测试和比较发现的特定的分割方法
在脑功能网络中定义边。分割方法定义了组成图的节点,如何定义节点之间的功能连FC(即边)同样重要。本文纳入的绝大多数 (77%) 研究使用双变量相关性,尤其是Pearson 或 Spearman,作为FC的度量。在下面的关键问题 1 中,我们考虑如何对 FC 的估计进行阈值化,以便在二值图中定义边是否存在。
量化功能连接。FC的量化对解释网络密度和脑区之间的关系具有重要意义。目前普遍使用的边相关(通常是双变量相关)并没有在统计上将两个脑区之间的直接连接与由于其他脑区产生的间接影响分开。相比之下,大多数条件关联方法(例如,部分相关)通过反转所有脑区之间的协方差矩阵来消除共同方差并根据两个脑区之间的唯一连接性来定义边。
目前,对于 FC 是应该基于边还是条件关联尚无定论。然而,我们希望强调的是,随着网络内平均总体相关性的增加,部分相关值平均必须降低。此外,部分和完全相关揭示了静息态数据中完全不同的图论拓扑性质,并且可能对同一科学问题产生不同的结论(例如,识别功能中心)。从神经病理学的角度,研究人员期望看到功能连接的明显增加或降低,应根据相对边密度和平均 FC 来解释偏相关的使用。在这里回顾的研究中,10% 使用了偏相关,但几乎没有研究解释边密度的可能差异。
负边。定义边的另一个要点是如何处理负FC的量化。 RSFC 数据的完全相关通常会产生一个 FC分布,其中大多数边是正的,但也有相当一部分是负的。相比之下,偏相关方法通常会在正负 FC 估计之间产生相对平衡。在 RSFC 图分析中如何处理和解释负边几乎没有共识。本分析纳入57% 的研究报告了关于在图形分析中如何处理负边的信息不足或没有信息。 21% 的研究在分析之前删除了负边,9%的研究将负边作为正边(即:使用 FC 的绝对值)。综上所述,一些图的指标要么没有被定义,要么存在负边需要调整。
重要的是,边相关RSFC 分布的平均值取决于全局信号回归 (GSR) 是否包含在预处理流程中。当包含 GSR 时,正相关和负相关之间通常存在平衡。如果将 GSR 作为一个回归量包括在内,那么大部分 FC 估计可能会因为与病例对照比较无关被丢弃,这是一个未经检验的主要假设。然而,负FC的含义仍不清楚,一些研究人员将负相关归因于统计伪影和GSR。
然而,鉴于在没有GSR的情况下可以观察到负相关,已有人研究负权重是否对网络内的信息处理有影响。负相关也可能反映 NMDA 在皮质抑制中的作用。这些连接应该也被纳入研究中,因为仅由负边组成的脑网络不保留小世界属性,但确实具有与随机网络不同的属性。总而言之,研究中关于负 FC 方法细节的遗漏阻碍了对图的定义。
基本的图度量——度分布。在解决了节点和边定义的问题后,我们还认为应该在文章中写明有关全局网络指标的信息,例如特征路径长度、聚类系数和度分布。如表3中所述,通常选择多个阈值下的局部和全局效率。然而,我们的分析显示,只有27%的研究为度分布提供了清晰的描述性统计数据,16%的研究绘制了度分布。在二元图中,度分布描述了网络中每个节点的边的相对频率。类似的属性可以通过加权图中的强度分布来量化。我们认为,出于几个原因,在研究中呈现强度分布对于理解RSFC 网络至关重要。首先,它提供了对数据完整性的描述,有观点认为,人类大脑的组织结构是为了最大限度地进行交流的同时最大限度地减少布线和代谢成本。因此,在检查全脑 RSFC 数据时,连接度最高的区域很少见,并且应该在强度分布的尾部。其次,报告度分布的详细信息有助于跨研究比较图拓扑,以及预处理和分析方法的影响。最后,将检查度分布作为数据分析的第一步可能会提供有关健康和临床样本中网络拓扑的其他不可用信息。之前有研究将度分布的尾部的边隔离以了解网络上连接度最高且少见的节点的影响。
表2 网络构建及边的定义
表3 在研究中普遍被使用的图指标
表4 在定义图的边的过程中使用的阈值方法
关键问题 1:边阈值和比较不平等网络
边阈值将 FC 的连续指标转换为图中的边。在的本文分析中,39%的文章将 FC 值二值化,使得图中存在或不存在边,而 45% 的研究将 FC 保留为边权重。无论研究分析的是二元网络还是加权网络,度 (k) 或节点数 (N) 方面不同的网络在根本上无法被比较。特别是依赖于 k 和 N的图指标(如路径长度和聚类系数)的组间比较结果会不确切。
大多数脑区分割方法都定义了每组图中具有相等数量节点 (N) 。另一方面,连接密度通常是临床研究中感兴趣的变量,因为病理改变不仅会改变连接强度,还会改变连接数。如果 N 固定不变,则组间 k 的变化会限制局部和全局效率的界限。如果两组的边密度不同,这几乎可以导致聚类系数和路径长度等指标的组间差异。确定在哪里干预这个问题在临床网络神经科学中非常重要,研究假设往往会选择在网络连接的数量和强度上进行干预。
为了解决这个问题,一些研究人员推荐了边密度在网络中相等的比例阈值 (PT)。此外,为了减少特定选择密度阈值之外的差异,29% 的研究已经测试了一个范围内的组差异。然而,我们认为基于PT(比例阈值)定义边缘对于临床研究可能并不理想,在临床研究中,功能耦合或病理引起的功能连接数量变化通常存在区域差异。例如,在一项抑郁症研究中,背内侧前额叶皮层与默认模式、认知控制和情感网络的连接性增强。当组间选定区域的 FC 不同时,PT (比例阈值)难以识别节点统计数据(例如度)中的虚假差异。与此同时,还有研究证明组间平均FC不同时,PT 增加了在网络中包含虚假连接的可能性。
使用Whack-a-node网络模拟在组比较中演示比例阈值(PT)的问题:
图2:随机选取3个存在较强超连通性(阳性) 的节点,3个存在较弱的低连通性(阴性)的节点,阈值法对度中心性组间差异的影响。
描述了三个未受影响的节点以进行比较,每个矩形的中心条表示100个复制的数据(患者n = 50,对照组n = 50)的中位数t统计值,上下边界分别表示第90百分位和第10百分位。t = 0处的黑线表示组间无平均差异,而t =−1.99和1.99处的浅灰色线表示组间差异,当p = 0.05时差异显著。(A)在5%、15%和25%密度下二值化的图。(B)在r ={2,3,4}处二值化的图。
(C)在r ={2,3, 4}处二值化的图。将密度作为协变量(D)强度中心性(加权图)。
图3表示了密度阈值对度中心性组间差异的影响
点表示给定密度下的平均t统计量,而垂直线表示95%置信区间。所有统计都反映了在不同密度二值化的图上计算的度中心性的组间差异。
讨论whack-a-node模拟
在我们的模拟中,疾病组中的3个节点是稳健超连接的,而3个节点是弱次连接的。该模拟的主要发现:使用PT(比例阈值)使得平均度强制相等会虚假地放大节点统计组间比较的变化。当各组其他方面相同时,使用PT在不同图密度下能够准确地检测出所选节点的超连接。然而,弱次连接的节点往往被认为具有统计学意义。在网络中包含虚假的弱次连接源于PT处理FC分布尾部的方式。
由于只保留FC分布高端的边,在该准则尖端的边最容易被删除。例如,在密度为25%时,FC强度在75%附近的微小变化可能导致包含或遗漏边。因此,如果关联到某一节点的边的FC在一组中较弱,那么使用PT生成的二值图将放大度中心性差异的统计意义。在某种程度上,FC强度的节点差异代表了分布集中趋势的转移,这个问题不能通过使用多个密度阈值来解决。如果在模拟中FC变化的方向翻转,我们也观察到同样的问题:在PT下,弱超连接的组间比较显著:图提供了检查不同维度(例如,局部和全局连接模式)的机会以了解网络内的不同模式,伸缩指的是这些维度之间的移动。我们检验了基于FC的阈值(使用Pearson r作为度量)和加权分析作为与PT的比较。这些方法不存在PT下明显的节点差异的虚假检测。相反,FC阈值在不同阈值下准确地检测了超连接节点,而不会放大弱低连接节点的显著性。然而,正如在其他地方指出的,如果两组的平均FC不同,在两组给定的某一水平上进行阈值化将导致图密度的差异,可能表现为节点统计数据的广泛差异。这是由于边的数量存在全局差异。因此,本文考虑在组间差异分析中,如果将每个受试者的图密度作为协变量是否可以在处理FC全局差异的同时保留FC阈值的可取方面。然而,将密度作为协变在效果上与PT相似,使得组间整个网络的度变化之和为零。(例如,相等平均度)。我们模拟的目的是提供一个概念的证明,在病例对照的图论研究中,PT可能通过强制相等平均度对节点统计有负面影响。然而,我们没有测试一系列参数来确定在哪些条件下存在这种问题。本模拟着重于二元情况下的度中心性和加权情况下的强度。虽然未经测试,但我们预计这些影响可能推广到其他节点度量,如特征向量中心性。重要的是,无论边密度如何,上面强调的PT问题都会发生,因此使用多个边密度并不能充分解决whack-a-node的问题。
关键问题 2:将理论与规模匹配:图分析的伸缩
可伸缩:图提供了检查不同维度(例如,连接的局部和全局模式)的机会,而可伸缩指的是在这些维度之间的移动,以理解网络中的不同模式。
本文分析的的第二个关键问题是神经生物学假设和图论分析之间的一致性,将其称之为理论与现实研究匹配。RSFC 的图提供多层次的内在连接模式的信息,从平均路径长度等全局信息到特定边的连接差异等细节信息异。例如,在重度抑郁症中研究的重点是背内侧前额叶皮层、前扣带皮层、杏仁核和内侧丘脑组成的特定子网络。
本文建议将图分析概念化,并根据从全局到具体的分析的可伸缩水平进行报告:全局拓扑、模块化结构、节点效应、边缘效应。对临床网络神经科学研究的回顾分析显示,大多数研究测试了人群在小世界等全局指标上是否存在差异。重要的是,许多研究为特定脑部疾病的病理生理学为什么会改变网络的全局拓扑结构提供的理论依据有限。在下文中,我们提供了关于路径长度和小世界属性的更具体的观点,以及研究者如何理想地将假设与分析水平相匹配。
小世界的临床意义。
20年来,许多研究都集中小世界属性所量化的“断开连接”和网络效率的损失上,尽管在大多数脑功能研究中都观察到了小世界属性,但该拓扑结构与人类信息处理之间的相关性仍不清楚。人类神经网络的其他特征,例如模块化,可能对网络功能有更重要的影响。更高的网络模块化反映了一个图其中节点之间的连接倾向于形成更密集的连接区域,能够更加稳健地抵御随机网络的断开。
大脑病理学是否应该作为一般规则反映在小世界属性中仍然不确定。例如,即使在灵长类动物和人类意识障碍通过麻醉显着减少感觉处理的实验中,也保留了小世界属性。由于小世界的传统测量方法依赖于密度并且不处理连接强度的变化,最近的研究已经重新修订了这个概念及其在网络小世界属性方面的具体描述。
尽管我们不质疑全局指标(例如小世界)描述网络方面的价值,但根据定义,它们仅提供宏观层面的信息。全局指标的组间差异很可能反映了图更精细层次上的具体影响。例如,选择性地移除功能中心区域中的连接往往会降低全局效率和聚类系数。同样,全局指标中为发现显著的组间差异并不意味着在图的其他层次(例如,节点或模块)上是同样的。为了证明图微观层次的组间差异在全局指标中可能不明显,我们进行了全局不敏感型的模拟,其中组在模块连接性方面存在显着差异。
图4 小世界性(σ)的组间差异作为边密度的函数。
每个矩形的中心条表示中位σ统计量(患者-对照),而上下限分别表示第90和第10百分位数。
图5 显示了在10%和20%密度下z评分度统计的组间差异。
模块之间连接的程度差异显示在最上面一行,而模块内部的差异显示在最下面一行。点表示跨节点的平均z统计量,而线表示平均值周围的95%置信区间。为了进行比较,描述了视觉网络中不显著的组间差异,重点模拟了DAN、FPN和DMN的连通性。
全局不敏感性模拟的讨论
在全局不敏感性模拟中,我们在代表典型静息态网络(如DMN)的功能模块水平上诱导FC的大群体变化。模拟对DAN、FPN和DMN区域内和区域之间的FC进行了调制。在模块内和模块间度中心性的组分析中,我们发现了FC的巨大变化。然而,尽管在网络结构上存在巨大差异,但两组图的小世界属性非常相似。
与whack-a-node模拟一样,本文并没有测试这些发现所适用的条件范围。全局不敏感模拟提供了一个概念的证明,即研究人员应该意识到,在图的较高水平上(如全局拓扑)没有显著性差异并不意味着网络在较低水平上(如模块化连接)同样是不显著的。综上所述,在静息态网络的图论分析中,研究人员应该与图的规模匹配的假设来设计他们的研究目标。
总结
本文的首要目标是为了提高临床网络神经科学研究结果的一致性。对静息态功能连接文献的调查揭示了图论方法在脑部疾病网络组织中的流行和前景。这种潜力在不同人群静息态的大数据计划中很明显(例如,人类连接组计划)。公开可用的静息态数据也可以通过作为实验数据集来提高可重复性,以证实独立样本中的特定发现。我们预计随着方法学的进一步完善和标准化,网络科学和脑成像的结合可以为脑疾病的神经生物学基础提供新的见解。
然而,我们的研究表明,方法的异质性阻碍了该领域的潜力。临床研究中的图论分析在大脑分割方法、FC 量化和使用阈值定义图的边的方面存在很大差异。这些方面是图论的基础,并优先于图论分析。此外,不同研究使用的网络指标存在很大差异。缺乏标准化的方法会产生许多不良的后果:任何两项研究使用相同的大脑分割方法、FC 定义、阈值策略和网络指标的可能性都非常低。这使得目前几乎不可能对临床网络神经科学文献进行正式的meta分析,从而削弱了区分不同病理生理机制或识别不同疾病共性的可能性。此外,图分析中的方法异质性削弱了数据共享的价值。为了实现数据共享的巨大潜力,标准化不仅需要在数据采集而且数据分析中实现,并使用同一个框架来指导图分析中的假设与指标相匹配。
正如框2中总结的那样,我们认为应该使用一种通用方法来对RSFC 数据进行图形分析。而大脑分割、FC 定义、边缘阈值和网络指标的飞速发展使得这是一个具有挑战性的命题。尽管继续改进大脑分割方法很重要,开发标准化大脑分区方法可以促进可比性。网络结构的许多方面(例如:一个区域内功能连接模式的同质性)在大脑分割中的特定水平(可能是 200-400 个节点)上在很大程度上是一致的。同样,量化功能连接的最佳方法是一个悬而未决的问题,但在缺乏方法学一致性的情况下,图相关的指标通常无法在研究中进行比较。
与此同时,大多数研究中很少或没有提供关于如何将负 FC值纳入图形分析的详细信息,而全局信号回归产生的FC 分布大约一半边为负。此外,分布于负值的 FC 估计可能具有不同的拓扑属性,例如模块化降低。即使在明确删除负边的 21% 研究中,仍不清楚该决定对关于图结构的实质性结论有何影响。近年来,在量化常见的图指标方面取得了进展,例如包括负边的加权网络中的模块化,以及越来越多的研究倾向于使用加权而非二元图分析。无论如何,纳入负值FC 将促进临床研究之间的比较。
方法学的异质性也导致研究中相同的图统计数据很少,但是这是检查结果是否可复现的重要一环。对删除特定边具有弹性的网络通常具有高度集成的度分布,这种度分布的模式可能与小世界网络属性有关,这种分布应该在研究中详细地描述。同样,边密度、平均 FC、聚类系数和特征路径长度等指标描述了图的基本属性,这些基本属性可用于更详细的后续分析。在临床网络神经科学中制定针对研究细节和透明度的标准可以促进神经影像学研究的可重复性,。
除了标准化图论分析和研究结果展示之外,本文还更详细地研究了两个关键问题。首先,我们考虑了使用 PT(比例阈值)的优缺点,PT是一种使图之间的边数相等的常用方法。其次,我们阐明了考虑图指标的层次以将假设与图不同层次的指标相匹配的价值。
我们的研究发现的大约三分之一的研究应用了 PT,即在单个或多个边缘密度下对图进行阈值处理。尽管这种方法与之前比较不平等网络相一致,但它在临床研究中的应用在概念上尚且存在问题。许多脑部病变可能会影响目标区域或网络,而除此之外的区域的连接基本上不受干扰。例如,尽管额边缘通路与情绪障碍密切相关,但是视觉网络在很大程度上并没有受到影响。越来越多的证据表明脑部疾病会改变功能耦合的强度,并可能改变功能连接的数量。因此,如果某些脑区受到病理影响,但其他脑区与匹配的对照人群相似,则 PT 可能会错误地删除或添加病例或对照组图的连接,以保持组之间的平均程度相等。此外,如果大脑病理学改变了功能连接的密度(例如,神经系统中断与超连接相关)PT将掩盖组间密度的差异。如果这些组的边密度不同,那么人为地将密度等同起来也会降低图分析的可解释性。
除了这些概念问题之外,我们的模拟表明,PT 可能会导致检测到虚假的组间差异。总而言之,在临床研究中应用PT(比例阈值)可能有两重风险,一是病理相关连接密度差异的敏感性降低,二是识别可能是统计假象的组间节点差异。当人们认为基于 FC 的阈值和加权分析准确地检测到组间差异同时还允许边密度发生变化时,这些问题使得 PT的临床应用价值值得商榷。但是,也有研究发现,与基于FC的阈值相比,使用比例阈值的群体差异在不同阈值上更加一致。
因此,我们对病例对照比较中的边缘阈值的划分有两个建议。首先,如果对节点统计感兴趣,通常应该首选加权分析或FC阈值化而不是PT(比例阈值)。其次,为了排除节点结果反映平均FC的全局差异的可能性,可以将平均FC作为加权分析的协变量,或将平均FC作为FC阈值二值图分析的每个受试者密度的协变量。除此之外,节点组间差异出现后应进行敏感性分析。也就是说,如果在fc阈值图中发现了组间差异(例如,患者前扣带皮层的度更大),是否在讲边密度作为协变量后显著性消失?这一如果是这样,这暗示可是因为全局拓扑的组间差异导致了节点的发现。研究人员不应该将密度作为FC阈值图的协变量作为识别组间哪些节点不同的第一步,因为这可能会陷入whack-a-node问题(即虚假节点效应)。
第二个关键问题是,许多文章中的研究假设与相应图的分析之间的一致性提供的理论依据有限。大多数研究的主要目标是发现在小世界等全局指标上是否存在组间差异,但大多数疾病(例如脑损伤、阿尔茨海默病)主要影响网络内区域的节点中心。我们的全局不敏感性模拟侧重将假设与图分析不同层次的指标相匹配的重要性。我们证明了全局图指标,特别是小世界,可能对模块或节点中心性的组差异不敏感。模块化和节点中心性等指标提供了重要的有关脑区可被解释的组织学信息。总而言之,无论是阳性还是阴性的结果,研究人员不能将图论的一个层次的发现推广到另一个层次。通过根据图指标的可伸缩性的层次数据分析,研究人员可以清楚地从探索性分析中发现确证性,可以促进神经影像学研究的可重复性。
总之,目前需要一个标准化的研究框架来为临床神经科学中 RSFC 数据的图论分析提供基本的决策。研究人员自愿采用该策略,最大限度地提高对假设效应的敏感性,同时允许研究之间的结果的比较。基于任务的 fMRI已有许多功能强大易于获得的免费的数据处理软件。同时也有越来也多的软件越来越多可用于静息态fMRI研究,但新的方法仍然层出不穷,我们相信软件开发人员将对于促进图论的标准化分析至关重要。我们预计,一个标准化的方法框架将促进研究假设、理论和图形分析之间的一致性、可重复性、数据共享和meta分析,并最终促进临床网络神经科学的更快进展。
框2 临床神经科学最佳的数据处理策略的建议
问题 | 推荐方法 |
---|---|
不同研究的大脑分割方法差异很大 | 建议大脑分组应符合下列最低要求:全面覆盖大脑的各个功能区,包括皮层、皮层下结构以及小脑将大脑划分为至少200个脑区基于功能连通性来划分脑区,可与多模态结合确保脑区功能连接的高度同质性。 提供明确的分割脑区组成的模块化结构 |
RSFC数据的质量随采集长度和时间的变化而变化 | 1)更长的静息态获取有助于提高FC估计的稳定性,从而提高它们的重测可靠性。我们鼓励临床研究者采集至少9分钟的静息态数据,并尽可能使用更短的时间采样间隔(例如1s TR)。 |
边的定义 | 功能连接的量化:基于条件关联的功能连接体的可靠性随着节点数量的增加或测量数量的减少而降低,因此无论是在时间还是测量方面都扫描更长的时间。然而,二元相关性的稳定性并不依赖于节点的数量,值通常稳定在250个测量值左右。对于常规的静息态数据(例如,180Volumes,TR = 2s)和综合分割脑区,我们建议使用边相关的收缩估计量,而不是条件关联度量。比例阈值:在病例对照研究中,建议不使用比例阈值来创建二值图 (有关更详细的建议,见模拟1)。负边权重:研究应该提供关于构建图时如何处理负FC估计的细节,无论是加权的还是二进制的。在网络神经科学中,删除负边是一个很大程度上未经验证的假设,值得更深入的研究。如果有许多负边(例如,使用全局信号回归或偏相关),应该对此进行分析和报告,并且可以使用单独的图表来描述。 |
不同研究的图指标各不相同 | 为了促进研究之间的比较,我们鼓励研究人员用一套标准的图表来描述指标,即使这些图表是描述性表格或补充材料的形式。作为一个最小集合,本文提出:(a)全局聚类系数,(b)平均路径长度,(c)模块度,(d)度,(e)特征向量中心性,(f)边强度的汇总统计。 |
神经生物学和网络指标的联系 | 研究人员应当在全局到局部的可伸缩的分析层次上来概念化和描述图论分析。全局指标可能对病理或神经发育的局部影响不敏感。我们还主张阐明图的层次水平与神经病理学的生物学解释之间的一致性。一些图指标(如小世界属性)与理解大脑疾病的相关性仍不清楚。 |