重复行为训练与经颅直流电刺激(tDCS)的结合有望在受训任务之外对脑功能产生有益效果。然而,对于其潜在机制了解甚少。我们进行了一项单中心、单盲、随机对照试验,比较了认知训练与同时进行阳极tDCS(目标干预)或模拟tDCS(对照干预)的认知训练。主要结果(受训任务表现)和次要行为结果(转移任务表现)已在其他研究报道。本研究通过预先规定的多模态磁共振成像分析,在48名老年人中进行了为期三周的前额叶阳极tDCS执行功能训练前后的研究。结果表明,训练结合主动tDCS调节了前额叶白质微结构,其预测了个体转移任务表现的改善。训练加tDCS还导致了刺激部位的灰质微结构变化,并增加了前额叶的功能连接性。我们对神经调节干预的机制提供了洞察,表明tDCS引起了纤维组织和髓鞘形成的改变,与目标区域的胶质相关和突触过程,以及目标功能网络内的同步。这些发现推进了对tDCS效应机制的理解,从而为未来实验和转化tDCS应用中更有针对性的神经网络调节做出了贡献。本文发表在Nature Communications杂志。(可添加微信号siyingyxf或18983979082获取原文,另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布)。
引言
在全球老龄化社会中,开发有效的认知干预措施以减少甚至预防年龄相关的大脑损伤已经引起了科学界的广泛关注。初步证据表明,行为训练和同时进行的经颅电刺激(tES)的结合,这是最广泛使用的非侵入性脑刺激(NIBS)技术之一,可能在年轻人和高龄人群中诱导跨任务的认知益处。特别是,重复的阳极性经颅直流电刺激(tDCS)疗程与认知训练的结合可以增强训练收益,有可能诱导持续一个月的认知增强。例如,在执行训练期间对背外侧前额叶进行阳极性tDCS,与假实验组相比,阳极性组在训练或近距离转移任务中的工作记忆表现得到了增强。然而,有益效果的证据仍然不是毫无疑问的,附加效果通常很小,并且根据内部或外部因素在个体之间变化。因此,更好地理解tDCS在老年大脑中发挥其有益效果的机制至关重要,以提高这种技术的应用潜力。
对于与学习相关的大脑可塑性,以前的工作已经表明,大脑的微结构可以通过学习进行修改。在死后猴脑中的开创性工作表明,学习新技能确实诱导了更密集、更广泛的白质投射的生成。在动物和人类中,可以通过扩散张量成像(DTI)对学习诱导的结构可塑性进行体内可视化。DTI对微结构变化敏感的主要参数是分数各向异性(FA)和平均扩散性(MD),其中白质通路中的FA反映了纤维的方向一致性,灰质中的MD反映了水分子扩散的大小。补充的组织学分析表明,在细胞水平上,神经和非神经依赖活动的变化(例如,突触生成和树突棘形态的变化)以及白质的变化(例如,轴突直径、髓鞘、填充密度、纤维几何形状的变化)都对观察到的神经影像数据的改变有所贡献。例如,Scholz等人使用DTI显示,几周的技能训练诱导了人类白质性质的变化,可能反映了髓鞘或改变的填充密度的变化。在啮齿动物和人类的大脑中,都已经证明了学习后的类似微结构重塑过程,这些过程通过DTI参数的变化在白质和灰质结构中得到了记录。总的来说,虽然通过DTI评估的微结构变化已经在多项研究中被证明是由训练引起的,但它们的确切时间尺度、贡献的细胞过程以及它们与个体学习量的关系尚未完全理解。
经颅电刺激(TES)以非侵入性方式调节神经元的兴奋性和突触可塑性。重复的tDCS疗程可以诱导兴奋性和突触效率的长期变化,产生类似长期增强(LTP)的效果。安全且常用的tDCS剂量范围是1-2毫安,持续时间最长为30分钟。来自概念证明研究的先前证据表明,在年轻人和老年人中,使用1毫安的阳极性tDCS进行20分钟的单次和重复刺激会话具有一般效果。重要的是,系统比较不同刺激参数的研究已经显示出强度依赖性神经可塑效应的非线性。与年轻人相比,老年人可能需要更高的强度来诱导行为变化,因为由于与年龄相关的萎缩减少了电场,可能到达大脑的电流更少。
在原理证明研究中,同时应用tDCS-fMRI揭示了局部活动和功能连接性(大脑区域之间的时间一致性活动)的变化,这预测了行为表现的增益。对重复训练会话的功能连接性调节甚至可能反映网络级别的重组,促进更持久的神经可塑性。
建立人类大脑中的潜在细胞(和分子)机制可以推进对神经调节可塑性的理解。动物模型表明,由于神经元形态(例如,轴突、树突棘和细胞体的大小/形状)的改变、胶质细胞活动的改变或突触连接的重组/重塑,tDCS诱导了改变的组织密度作为神经可塑现象。在人类参与者中,结合重复的tDCS和训练的干预措施已经被建议可以诱导大脑白质和灰质的微结构变化,这些变化与学习诱导的变化相似,但直接证据有限。重要的是,需要多模态成像来建立对潜在神经生理机制的全面理解。
在这项研究中,我们测试了这样的假设:与安慰剂(假)刺激的训练相比,连续的前额叶阳极tDCS在重复的认知训练会话中应用,会调节皮质目标区域和相关神经网络的白质微结构。tDCS(1毫安)在两个执行功能训练任务(字母更新训练,决策制定)同时进行了20分钟。虽然在主要结果(字母更新的表现)上没有组间差异,但我们在干预后和随访时观察到tDCS组在近距离转移效果(N-back的表现)上优于对照组,但在其他转移任务中没有(请参见参考文献41中的研究的行为结果)。在当前的论文中,我们使用了在干预前后获取的DTI进行个体纤维束追踪和白质微结构的定量。此外,DTI允许我们检查刺激目标的微结构属性是否会因为干预而改变,如前文所述。微结构可塑性标记的研究被静息态功能磁共振成像(rs-fMRI)补充,以分析目标(前额-顶叶)网络内的功能同步性的改变。为了探索神经改变的行为相关性,我们进一步进行了与LU(训练,主要行为结果)和N-back(与目标相比,对照干预的表现增强的相应近距离转移任务)的相关性分析。
方法
参与者
我们进行了一项单中心、单盲随机、安慰剂对照试验,比较了认知训练与同时进行的阳极tDCS(目标干预)和认知训练与同时进行的假tDCS(对照干预)。主要结果(训练任务的表现)和次要行为结果(转移任务的表现)在其他地方报告。在这里,通过在48名老年人(参见表1的人口特征)进行前额叶兴奋性tDCS的三周执行功能训练前后的多模态磁共振成像的预设分析,解决了潜在的机制。所有参与者都是右利手,母语是德语,没有神经疾病或严重精神疾病的病史,没有服用任何处方药(如抗精神病药、抗抑郁药、抗癫痫药、镇静药、阿片类药物;允许使用非处方药,如阿司匹林等抗炎药),并在神经心理筛查中(建立阿尔茨海默病登记处联盟,CERAD-Plus测试电池,https://www.memoryclinic.ch)按照年龄和教育水平调整的正常范围内表现。CERAD-Plus测试电池得分的纳入阈值定义为每个子测试的表现在正常样本均值的-1.5 SD内。在筛查访问时,共有14名参与者不符合纳入标准,因此没有被邀请参加研究(其中,n=9因CERAD-Plus的表现而被排除)。被邀请的参与者完成了TrainStim-Cog临床研究,他们在三周内(每周三次,总计最多九次会话;只有一个参与者因病缺席了一次会话)接受了左前额叶tDCS的阳极或假刺激,同时进行了两项执行功能任务的训练(一个字母更新任务和一个基于价值的马尔可夫决策任务)。
所有的行为数据都在参考文献中报告。样本功效计算在研究方案中发布。估计效应大小为0.8,为了在主要结果中展示效应,需要在分析中包括46名参与者(每组23名),使用独立t检验,双侧显著性水平为0.05,功效为80%。由于预计的退出率约为20%,每组包括了28名参与者。参加MRI评估并非参加试验的必要条件。在51名参与者中,有3名(阳极组2名,假刺激组1名)没有参加MRI扫描(由于禁忌症,如体内金属或幽闭恐惧症),这导致了数据集减少到n=48。在本研究中,我们分析了这48名参与者的磁共振(MR)影像数据——包括静息状态功能MR影像、结构T1影像和扩散张量成像(DTI)——在三周干预前后立即获得。研究流程图见图1。该研究已经得到伦理委员会的批准,并按照赫尔辛基宣言进行。所有参与者在参与前都已书面同意。
认知训练与同步的tDCS
认知训练包括字母更新任务和三阶马尔可夫决策任务。这些任务使用Unity、C++、Visual basics.NET (字母更新任务)和E-prime 3.0(马尔可夫决策任务)进行编程。在字母更新任务中,以随机顺序呈现不同长度的A到D的字母列表。每个列表后,要求参与者回忆最后呈现的四个字母。在马尔可夫决策任务中,呈现3D角色,提示参与者在两个动作中进行选择,这将导致与动作相关的结果(以货币收益或损失的形式)。因此,参与者必须学习选择最优的动作序列,以最大化他们的总收益并最小化总损失。一个由1-back和2-back条件组成的数字n-back任务,用于评估对未经训练的工作记忆任务的转移。每个条件包括九次试验和十个项目。任务在训练前(pre)和训练后(post)的会议中进行。所有详细信息,包括其他认知任务,都在参考文献中描述。认知训练伴随着阳极或假tDCS,通过电池操作的刺激器(Neuroelectrics Starstim-Home Research Kit)进行。两个圆形盐水浸泡的海绵电极(直径5厘米;阳极:F3,阴极:Fp2)使用10–20 EEG系统网格安装在氯丁橡胶头帽上。直流电以1毫安的强度在阳极tDCS组中输送20分钟,在假组中输送30秒。在蒙特利尔神经学院(MNI)模板大脑上进行电场模拟分析,以说明到达目标的电流完全在假设产生神经生理效应的场强范围内(补充图5)。刺激与字母更新任务同时开始(并在马尔可夫任务的大约前半部分结束)。
MRI数据获取
在波罗的海成像中心(格赖夫斯瓦尔德大学医学诊断放射学和神经放射学中心)使用32通道头线圈的3-T西门子verio扫描仪(SIEMENS MAGNETOM Verio syngo MR B17)获取MR图像。使用回波平面成像序列(3 × 3 × 3 mm³体素大小,重复时间(TR) = 2000 ms,回波时间(TE) = 30 ms,翻转角度 = 90°,34切片,降序采集,视场192 × 192 mm²,176体积,TA = 6.00 min)获取静息态fMRI扫描。参与者被指示闭上眼睛,不要特别思考任何事情,并尽量不要睡着(参与者是否睡着是在静息态扫描后直接通过自我报告评估的;没有参与者报告说他们已经睡着)。使用三维T1加权磁化准备快速梯度回波成像(1 mm³等向体素,TR = 2300 ms,TE = 2.96 ms,反转时间 = 900 ms,翻转角度 = 9°,256 × 240 × 192 mm³矩阵)获取高分辨率解剖图像。此外,获取了一种扩散加权自旋回波回波平面成像序列(1.8 × 1.8 × 2.0 mm³体素大小,TR = 11100 ms,TE = 107 ms,70切片,64方向(b = 1000 s/mm²),1 b0)。
MRI数据分析
结构T1加权图像和DTI分析
T1和DTI数据由Freesurfer版本6和FSL版本6处理。首先,T1数据通过FreeSurfer的横截面流程(recon-all)进行处理,该流程包括运动校正、去颅、标准化、强度校正、体积分割和皮质表面重建。其次,应用纵向流程,以使用稳健的、反向一致的配准创建稳健的、无偏的主题模板,这增加了可靠性和统计功效,用于检测可能随干预发生的大脑结构变化。质量评估涉及所有处理步骤的视觉检查和使用Freesurfer QAtools计算解剖结构信噪比。所有结构数据都被认为适合分析。
提取了对应于刺激目标的ROI的区域体积(即,来自Desikan-Killiani图谱的左中额回),并使用协变量方法调整了总颅内体积(ICV)。
DTI数据预处理
包括使用自动仿射变换算法进行涡流和头部运动校正。在每个体素处,将扩散张量模型拟合到运动校正的DTI数据,以创建个体的三维FA和MD图。使用FSL的BEDPOSTX计算每个大脑体素处的纤维方向分布。我们使用基于种子的概率方法来跟踪前额叶白质纤维。概率纤维跟踪是使用FSL中实现的PROBTRACKX2进行的;这种方法在每个体素处重复采样分布,以产生连接选定种子区域的体素的“流线”。应用了以下参数:5000条流线样本,0.5毫米步长,曲率阈值=0.2。哈佛-牛津图谱中的左中额回,也用于静息态fMRI分析(见下文),转化为个体DTI空间,与扩散图相乘并二值化,用作纤维束的种子区域。考虑到前额流线的大尺寸和范围,这些路径被阈值化为个体纤维束特定连接概率的10%,以减少包含额外纤维束的可能性。图2提供了阈值化概率纤维束的典型图像。为了生成典型图像,所有参与者的个体纤维束被标准化,转化为二值图像,然后求和(颜色编码反映体素在33-100%的参与者中出现的概率)。所有数据在被纳入分析之前都进行了视觉检查以寻找主要的伪影。分数各向异性(FA)被用作我们的纤维束完整性的测量,因为早期的研究已经表明它是白质纤维微结构完整性的可靠评估。然后通过用个体扩散图遮罩纤维束,二值化以定义纤维束遮罩,并沿纤维束平均个体体素值,计算所有流线的平均FA,然后输入到统计分析中。
个体的T1加权图像与b0图像进行了核心配准,使用刚体变换。这些配准被用来将左侧刺激目标的遮罩转化为MD图。为了从刺激目标内的灰质中提取MD,个体分割的左中额回被用于基于种子的纤维束成像和rsFC分析的ROI遮罩,这与以前的研究一致。
为了评估FA结果的稳健性,我们进行了补充的基于纤维束骨架的空间统计(TBSS)和自动全球纤维束追踪分析,这些分析带有解剖学先验(使用受潜在解剖学约束的纤维束,TRACULA)有关更详细的信息,请参见补充方法和结果)。
静息状态FC分析
使用Matlab(v2019a)和CONN工具箱分析了静息状态fMRI数据。数据预处理包括功能对齐,切片时间校正,结构分割和归一化到MNI模板,功能分割和归一化,以及使用6毫米高斯核进行平滑。使用工具箱中实现的CompCor方法对来自生理和其他噪声源的血氧水平依赖性(BOLD)信号进行了去噪。然后对残留的BOLD时间序列进行了0.01 Hz的高通滤波。选择了中等运动阈值(0.9毫米切片到切片运动和全局平均信号低于5 SD)。阳极刺激组和假刺激组中的平均和最大帧位移作为运动量在表2中显示。通过使用Artifact detection toolbox对BOLD信号进行去噪的一部分,将清洗实现为CONN预处理管道的一部分,通过回归噪声组件进行异常扫描。检测到的异常扫描次数超过样本平均异常扫描次数(平均值7,SD 22)的3 SD的数据将被排除在静息状态分析之外,结果排除了一个参与者。所有的分割,归一化和配准步骤都经过了视觉检查,并被认为适合分析。
表2 | DTI,rsfMRI数据和T1的运动参数
提供了平均值和SD值。源数据以源数据文件的形式提供。rsfMRI 静息状态功能磁共振成像,FD 帧间位移,DTI 弥散张量成像,SNR 信噪比。
在预处理和去噪之后,将每个参与者的被试内(first-level)连接图输入到全脑区域分析中。使用2(组:阳极,假设)× 2(时间点:前,后)设计对被试间(second-level)的一般线性分析进行建模。评估了组和时间点之间的交互,以检查从前到后的功能连接性改变是否在阳极和假设组之间有所不同。年龄和性别作为协变量。使用假发现率(FDR)校正的p值0.05在簇级别(未校正的p <0.001的高度阈值)对分析进行了多重比较的校正。
统计分析
为了评估刺激条件之间微结构MRI标记的差异的统计显著性,我们使用了包括emmeans,tidyverse,ggplot2和GGally包的R进行统计分析。对每个依赖变量(干预后的FA/MD)计算线性模型。模型根据年龄,性别和相应的基线值进行了调整。计算了基于模型的固定效应的后续比较。在“结果”部分报告了T值,自由度和p值。使用了双侧显著性水平α = 0.05。未对p值进行多重比较调整。
结果
我们进行了一项单中心、单盲随机、安慰剂对照试验,比较了认知训练与同时进行的阳极性tDCS(目标干预)和认知训练与同时进行的假tDCS(对照干预)。该研究从2018年2月15日(首次参与者入组)进行到2020年3月25日(最后一位参与者入组)。主要结果(训练任务的表现)和次要行为结果(转移任务的表现)在其他地方已经报告。在这里,我们通过预先指定的多模态磁共振成像分析,在48名老年人进行了为期三周的前额叶阳极性tDCS的执行功能训练前后,解决了潜在的机制。参与者被随机分配到两个组(阳极和假tDCS),使用基于年龄和基线表现的分层区块随机化。所有参与者都参加了在三周内提供的三次每周的训练会话(总共九次会话)。训练包括字母更新和决策制定任务,持续约40分钟。每天都应用tDCS,强度为1毫安,持续20分钟(假组为30秒),在第一个训练任务开始前短暂开始。使用了一个针对前额叶功能的传统tDCS布局。阳极位于左侧背外侧前额叶的中心(10-20 EEG系统的F3;大小:直径5厘米);阴极位于对侧眶上区(Fp2;大小:直径5厘米)。不同组之间的不良事件发生率没有差异(发生率比率[95% CI]:0.8 [0.4, 1.9],补充表1),James盲法指数(平均值[95% CI]:0.67 [0.55, 0.80],补充表2)表明盲法成功(更多信息请参见补充方法和结果)。在干预前两天和干预后两天进行了MRI(表1,图1)。MRI包括了不同的成像模式来研究对神经网络的影响,如使用个体概率性纤维束追踪来量化白质束中由于干预而产生的结构可塑性的DTI(定义为分数各向异性,FA,反映扩散的方向偏好),以及刺激目标的灰质微结构(定义为平均扩散性,MD,反映分子扩散率)和静息态功能共振成像(rs-fMRI)来检查功能网络连接性的改变(FC,定义为网络区域中血氧水平依赖性,BOLD,信号的时间相关性)。我们使用了常见的MR数据分析软件流程。我们研究了干预后阳极和假组之间的FA、MD和FC的差异,以仔细检查在认知训练期间阳极性tDCS的潜在附加效果。我们还探索了不同MRI标记之间的效果,以及MRI标记和工作记忆性能增益(即,LU和N-back任务)之间的线性关系。
表1 | 人口统计特征
提供了平均值和标准差值(除了“N”)。
总分(最高100分),包括来自言语流畅性、波士顿命名测试、建构实践、词汇列表学习、词汇列表回忆、词汇列表识别的组成部分。源数据作为源数据文件提供。
APOE 表示载脂蛋白E,GDS 表示老年抑郁量表(最高分:15,切点为6)。CERAD 表示建立阿尔茨海默病登记处的联盟。
图1 | 研究流程图。
在对认知任务的表现进行预评估后,进行了干预前的MRI;干预在两天后开始,持续三周(每周进行三次的真刺激(阳极)或假tDCS + 训练)。在干预期结束后的两天内进行了干预后的MRI会话。MRI表示磁共振成像,tDCS表示经颅直流电刺激。在纤维束追踪分析中排除了n = 2(一个来自阳极在后,一个来自假组在前)由于缺少DTI数据。*由于在功能扫描期间过度运动,从静息态fMRI分析中排除了n = 1的假组。
大脑刺激后白质微结构发生调整
我们使用FSL的流程从刺激目标(左中额回,定义为阳极电极下方的回,从哈佛-牛津图谱中选取)进行个体概率性纤维束追踪,以描绘前额叶白质路径。这种方法在每个体素处重复采样分布,以产生连接选定种子区域的体素的“流线”。为了在干预前后量化这些路径中的微结构完整性,我们提取了FA值(沿着束线平均个体体素值)对于两个时间点和组,并将其输入到线性模型分析中,以干预后的值作为因变量,以组为被试间因素(包括干预前的FA值、年龄和性别作为协变量)。我们观察到一个组间差异,即在干预后,与假组相比,阳极组在束线上的FA值更高(t41 = -2.607,p = 0.013,部分η2 = 0.14;模型导出的调整后的估计均值[CI]:阳极组为0.348 [0.343, 0.354],假组为0.339 [0.334, 0.344],图2)。干预前的FA值与干预后的FA值呈正相关(t41 = 10.343,p < 0.001,部分η2 = 0.72)。没有观察到干预前FA值与刺激组的交互作用,因此在最终模型中没有包含交互项。没有观察到年龄和性别与干预后FA的显著关联(t's < 1.22,p's > 0.23,部分η2's < 0.05)。束线体积在干预过程中没有改变(t41 = 0.547,p = 0.587,部分η2 = 0.01;模型导出的调整后的估计均值[CI]:阳极组为3905 [3669, 4141],假组为3814 [3563, 4065])。总的来说,与假tDCS相比,接受阳极tDCS的训练组在结构目标网络内的FA增加更多,这表明活性tDCS加训练调节了白质束线的微结构。
图2 | 白质路径的微结构。
a 使用MRIcroGL在蒙特利尔神经学研究所(MNI)大脑上创建的阈值概率性束线的规范图像。为生成规范图像,所有参与者的个体束线被标准化,转换为二值图像,然后求和(颜色编码反映了体素在33-100%的参与者中存在的概率)。
b 均值(阳极为黑色钻石,假为白色钻石)和个体数据点(阳极为橙色/红色单圈,假为浅蓝色/深蓝色单圈)。箱线图表示中位数(中线),25th,75th(箱体),以及5th和95th百分位数(须)。n = 46个独立参与者。在接受阳极相比于假tDCS的训练组中,训练后沿着束线的FA增加。FA,分数各向异性。
为了评估FA结果的稳健性,我们进行了补充的基于纤维束骨架的空间统计(TBSS)和自动全球纤维束分析,这些分析带有解剖学先验(使用受潜在解剖学约束的纤维束,TRACULA)。TBSS创建一个平均骨架,代表了所有对群体常见的纤维束的中心。然后将每个参与者的FA数据投影到这个骨架上。全脑体素级统计比较显示,与假设组相比,阳极组在左侧和右侧的侧前额、中前额和顶叶区域的相对FA增加显著(置换检验,p < 0.05,TFCE校正,参见补充表3和补充图1)。为了描绘特定的纤维系统,我们将来自个体概率性纤维束分析的典型路径与约翰·霍普金斯大学(JHU)白质图谱的图谱标签叠加(补充图2)。然后使用TRACULA重建了两条感兴趣的纤维束(即:胼胝体的前额部分,CC;左侧上纵束的一部分,SLF)。与假设组相比,阳极组的CC中的FA值更高(主效应t40 = −1.96,p = 0.058,部分η² = 0.09),并且发现了初始FA值与组的交互作用(t40 = 2.01,p = 0.051,部分η² = 0.09)。因此,对于基线FA较高的个体,刺激效果更大(例如,对于基线值在25th百分位(0.52)的低值,阳极:0.52 [0.51, 0.53],假设:0.52 [0.51, 0.53],p = 0.530;对于基线值在75th百分位(0.57)的高值,阳极:0.57 [0.56, 0.58],假设:0.56 [0.55, 0.57],p = 0.089)。SLF中的FA在干预过程中没有改变(t41 = 0.02,p = 0.984,部分η² = 9.9e−06;模型推导的估计均值[CI]:阳极为0.42 [0.41, 0.42],假设组为0.42 [0.41, 0.42])。总的来说,我们发现在阳极组与假设组的比较中,对于基线FA较高的个体,CC(胼胝体的前额部分)的FA值增加,而左侧SLF没有观察到差异。
灰质微结构在脑刺激后发生改变
我们使用Freesurfer对阳极下方的皮质中的灰质区域(左中额皮质)进行了分割,将其覆盖在刺激目标上(图3),并投影到DTI空间中,以提取干预前后的个体MD值。MD值被输入到线性模型分析中,以干预后的值作为因变量,以组为被试间因素(包括干预前MD、年龄和性别作为协变量)。干预后的MD值在阳极组中低于假tDCS组(主效应t41 = -2.30,p = 0.027,部分η2 = 0.11),并且发现了初始MD值与组的交互作用(t41 = 2.29,p = 0.027,部分η2 = 0.11)。因此,对于基线MD较低的个体,有益的刺激效果更大(例如,对于低基线值在25th百分位数(0.9 × 10-3),阳极:0.9 × 10-3 [0.8, 1.03 × 10-3],假:1.07 × 10-3 [1.00, 1.16 × 10-3];相比之下,对于高基线值在75th百分位数(1.15 × 10-3),阳极:1.18 × 10-3 [1.13,1.24 × 10-3],假:1.13 × 10-3 [1.09, 1.18 × 10-3])。对照分析检查了宏观结构变化是否可能解释微观结构差异。因此,评估了刺激对中额回灰质体积的影响,并发现没有显著效应(t42 = 0.110,p = 0.913,部分η2 < 0.01,模型导出的调整估计均值[CI]:阳极为13,924 [13,764, 14,084],假组为13,916 [13,759, 14,073])。总的来说,训练加tDCS降低了刺激目标下方的灰质中的MD,这表明干预后微结构发生了变化。
图3 | 刺激目标中的灰质微结构
a 左侧中额回(黄色),被选为(灰质)刺激目标,覆盖在MNI大脑上,使用MRIcroGL创建,提供在左侧。
b 均值(阳极组的黑色钻石和假组的白色钻石)和个体数据点(阳极组的橙色/红色单个圆圈和假组的浅蓝色/深蓝色单个圆圈)。箱线图表示中位数(中线),第25、75百分位数(箱体)和第5和95百分位数(须)。n = 46个独立参与者。对于初始MD在刺激目标中较低的个体,干预后的MD值在阳极组中比假组降低。lMFG左中额回,LH左半球,GM灰质,MD平均扩散性。
功能连接性在脑刺激后增加
为了研究阳极tDCS是否调节了功能连接性,我们使用CONN对静息态fMRI数据进行了种子点到体素的相关性分析。种子被选为代表阳极下方的区域(来自哈佛-牛津图谱的左侧中额回,中心位于F3,与其他使用ROI方法的tDCS研究一致,这些研究表明了神经效应),并计算了这个种子的BOLD时间过程在整个大脑中的皮尔逊r相关性。随后的第二级广义线性模型分析显示,对于群体(阳极,假刺激)×时间对比(前,后),在右侧前额皮质中发现了一个显著的簇(MNI坐标:x = 18,y = 18,z = 60,|T43| > 3.53,k = 116,p < 0.05簇大小FDR校正p,体素阈值:p < 0.001 p-未校正,调整了年龄和性别的协变量)在右侧上额回(图4)。更为宽松的未校正p阈值进一步支持该簇(覆盖在右侧上额和中额回)最有可能反映额顶执行控制网络内的连接性(MNI坐标:x = 18/32,y = 18/-4,z = 60/44,|T43| > 2.96,k = 705/145,p < 0.05簇大小p-FDR校正,体素阈值:p < 0.005 p-未校正,调整了年龄和性别的协变量)。总的来说,训练加tDCS后,额顶网络中的FC增加,表明网络同步性增强。
图4 | 基于种子的功能连接性。
a 结果簇(红-黄;pFDR < 0.05,punc < 0.001)来自于种子到体素静息态功能连接性分析,种子位于刺激处(黑色圆圈)。簇位置在右侧上额和中额回:与假刺激组相比,干预后阳极组对刺激目标的FC增加。峰值体素的坐标给出[x = 18,y = 18,z = 60]。脑图像是用MRIcroGL创建的。
b 平均值(阳极为黑色钻石,假刺激为白色钻石)和个体数据点(阳极为橙色/红色的单个圆圈,假刺激为浅蓝色/深蓝色)。
箱线图表示中位数(中线),第25,第75(箱),和第5和第95百分位数(须)。n = 47个独立参与者。sbFC,基于种子的功能连接性。lMFG左中额回。源数据作为源数据文件提供。
通路微观结构的变化与性能提升相关
为了探索不同MR标记物效应以及与性能提升(LU和N-back变化)之间的线性关系,我们生成了相关矩阵,描绘了所有双变量关联的散点图和斯皮尔曼相关系数(图5)。我们只观察到FA变化和N-back变化之间的正相关,这反映了由于tDCS加训练导致FA增加较多的个体在近转移任务中也表现出更明显的性能提升(rS = 0.402,p = 0.006,阳极:rS = 0.436,p = 0.054,假刺激:rS = 0.251,p = 0.23)。MD和FC的变化都没有显示与N-back变化的关联(|r|'s <0.299,p's <0.15)。一个包括所有三个神经调节水平的线性模型,用一个模型证实了未调整的相关性分析的结果(补充表4)。LU变化,它更直接地与实际的脑刺激干预(即,直接被tDCS针对的任务网络)相关,显示了与阳极tDCS组中FC变化的正相关(rS = 0.420,p = 0.046)。
图5 | FA、MD和FC的后-前差异与个体性能提升(LU和N-back变化)之间的相关性散点图。
脑图像是用MRIcroGL创建的。显示了斯皮尔曼等级相关系数。进行了双侧统计检验,并且没有进行多重比较的调整。FA的增加与N-back任务中更明显的提升相关。FC的增加与LU任务中更明显的提升相关。MD的减少与FC的增加相关。FA分数各向异性,MD平均扩散性,FC功能连接性,LU字母更新。蓝色条/点/0:假刺激组。橙色条/点/1:阳极tDCS组。p = 0.054,*p = 0.046,‘ p = 0.022,‘’ p = 0.006,**p = 0.002。
双变量散点图也显示,刺激目标的微观结构可塑性与功能连接性调节相关:灰质MD的更大降低与由于干预导致的FC增加相关(rS = -0.336,p = 0.022),这种关系在假刺激组(rS = -0.589,p = 0.002)中比在阳极组(rS = -0.009,p = 0.97)中更为明显,表明MD降低的个体由于训练而显示出增加的前额FC。
作为对照,我们探索了基线完整性值(白质中的FA,灰质中的MD,以及目标和结果簇之间的FC)与行为性能提升之间的双变量单调关系。没有出现重大关联(补充图4)。因此,我们的结果表明,白质束的可塑性与训练加tDCS干预的性能提升有特殊的关联。
讨论
在健康的老年人中进行为期三周的脑刺激辅助认知训练,结果在白质通路和灰质皮层目标区的微观结构以及更广泛的额顶网络的功能连接性中产生了改变。在接受阳极对比假tDCS的组中,来自刺激目标的前额束的FA增加,表明前额顶叶白质束的完整性更高(即,扩散/方向性一致性的方向偏好),这与干预后的更高(转移任务)性能提升相关。此外,灰质微观结构的变化在刺激组之间有所不同,主要在基线时微观结构完整性更高(即,分子扩散率/水分子扩散的幅度)的个体中,阳极比假tDCS后MD值降低。前额区域之间的静息态FC增加,表明tDCS诱导了前额顶叶网络内的额外同步。总的来说,我们为脑刺激在人脑中通过微观结构和网络改变提供了证据,这可能表征了由于干预而产生的功能益处的潜在机制。
我们重建了来自左前额皮质刺激目标的个体束。我们参与者群体的典型图像表明,白质纤维从刺激目标向同侧顶叶和对侧前额区域投射,显示出它们在特定轨迹中的个体差异。这些束的FA,反映微观结构的完整性,在阳极组与假组之间在联合干预后增加。补充的TBSS和TRACULA分析证实了从刺激目标(在阳极电极下方)开始的个体概率性束迹分析的发现。此外,它们表明,联合的tDCS加训练效果可能更多地由胼胝体而不是同侧前-后通路(即,与CC的前FA值的交互)来促进。
DTI衍生的指数FA反映了扩散的方向偏好,可以用来量化人脑中纤维组织的完整性,其中更高的值描述了更高的完整性。已经显示出,介导某些认知功能的白质通路中的个体差异可以预测行为性能的变异性。最引人入胜的是,这些DTI指标被用来描绘大脑的可塑性,其变化与长期增强(LTP)有关。因此,可以研究通过神经调节干预(如密度、髓鞘等)引起的细胞改变,这些改变是LTP诱导的指标。以前的研究观察到训练导致的FA变化,这与行为性能提升有关,甚至在学习后的短时间内也有变化。例如,Hofstetter和同事们发现,由短期(2小时)空间训练引起的海马体的FA变化,为新的学习经验导致的快速结构重塑提供了证据。我们之前对老年人进行3天空间训练的初步研究证实了这些初步结果,表明白质束中的动态重塑(而不是基线微结构完整性本身)的行为相关性在老化的大脑中得以保留。
在一项研究由联合tDCS和物理疗法干预引起的结构变化的开创性研究中,Zheng和Schlaug观察到在治疗组而不是对照组的下行运动束中FA增加。然而,由于对照组没有接受任何训练,所以这些结果并不能得出是否效果是由于tDCS或训练或两者都有的结论。在重复感觉学习过程中,Hirtz和同事们在左侧感觉皮质上施加阳极tDCS,发现在阳极组与假刺激组中,左侧前额皮质的FA增加,在中部和上部前额回附近。作者们得出结论,感觉学习涉及前额区域,而不是阳极电极下的刺激目标区域,因为决策过程需要招募额顶网络。实际上,这些结果以及我们对tDCS诱导的个体束微观结构可塑性的补充发现,可能表明前额白质对tDCS诱导的神经调节有一种普遍的(跨领域)易感性。
反映在FA变化中的候选细胞机制包括细胞膜和纤维密度、纤维一致性、轴突直径、髓鞘化、侧生芽的改变。虽然细胞内的方向一致性对FA度量有贡献,但已经显示出细胞外的性质也会影响水分子的扩散。考虑到以前的证据,一种可能性是tDCS可能通过在来自刺激目标的白质通路中的快速结构重塑,影响纤维组织和髓鞘形成。这些髓鞘变化将会影响大脑区域之间的信息处理速度,从而改善表现。然而,也需要考虑其他假设,如tDCS可能对细胞外空间的曲折性有潜在影响,导致实验组中体积分数的差异变化(影响水分子运动,从而影响FA值)。未来的方法学研究需要解开这些潜在机制对观察到的tDCS诱导变化的贡献。重要的是,微观结构改变与行为性能提升(如转移N-back任务所示)的正相关可能指向保留的(与脑刺激相关和与学习相关的)神经调节可塑性的功能意义。
在训练(LU)任务中,没有观察到微观结构改变与行为性能提升的相关性。与任务相关的程序(例如,重复与单次会话)、内容(例如,字母与数字)和涉及的执行过程(连续更新与记忆时间顺序相结合 vs. 主动比较操作)的差异,可能不仅影响大脑激活模式,从而影响行为调节的幅度,而且还影响与神经可塑性的关系。
为了检查刺激目标的灰质微观结构变化,我们提取了MD值。组间比较揭示了基线MD值和刺激组效应之间的交互作用,表明在初始在刺激目标中值较低的个体中,干预后阳极组相比假刺激组的减少。
DTI衍生的指数MD反映了分子扩散率,用于量化组织微观结构。更高的MD值表明细胞结构对水分子扩散的限制减少。MD的减少也与脑源性神经营养因子(BDNF)的增加相关,这是LTP的标记。除了BDNF的表达,观察到突触数量的增加和星形胶质细胞活性的提高,因此被讨论为学习诱导的神经元和/或胶质细胞结构重塑的潜在机制,对MD调节敏感。
我们发现阳极组相比假刺激组MD降低,可能表明由于tDCS导致的组织密度增加(由于神经元或胶质细胞过程的重塑)或组织组织增强(由于强化的树突或轴突)。在大鼠大脑中,tDCS调节听觉皮质的棘突生成(增加棘突的数量并影响棘突的形状),不仅诱导新棘突的形成,而且稳定已经存在的连接。我们观察到从联合干预前后的MD值略微增加,尽管统计上没有差异,这与老年人进行运动训练后发现的情况类似:在这里,Callow和同事们发现训练后皮质灰质(岛叶)MD增加,这与更好的认知性能相关。这些训练诱导的MD增加可以解释为老化大脑中细胞肿胀减少或通过突触和树突修剪提高神经效率(减少突触和树突的密度,从而增加MD值)。结合这些发现,我们的结果证实了老年人胶质相关活动的动态性质对突触过程的精细化的保留。然而,tDCS也可能作用于树突棘突的生长和分支、突触生成和/或胶质细胞体积的增加。
需要注意的是,DTI指标只是微观结构的间接测量。对于MD的变化,积累的证据表明,方向性(即,增加vs.减少)及其解释可能取决于目标大脑结构、参与者组(即,生理或病理条件)和正在研究的特定干预方法。炎症和水合/水肿的差异也对MD参数产生影响。例如,已知涉及炎症过程的急性多发性硬化病灶的MD值升高(也反映在其他MR参数如钆增强中)。这种炎症变化在tDCS后没有观察到;因此,由阳极tDCS加训练干预引起的健康老年人的MD变化不太可能是由于炎症过程(然而,注意到有一些初步证据表明在癫痫和中风的实验模型中通过阴极tDCS调节神经炎症反应)。未来结合多种神经影像测量(如灌注、谱学等)的研究可能有助于解开观察到的效应的确切机制。
在我们的数据中,区域MD调节与性能提升无关,这表明可能存在更复杂的关系,可能有其他影响因素,如一般训练能力或基线完整性的影响。这种关系的缺乏也可能指向不同模式效应的独立性,可能表明特定变化水平的不同时间尺度。我们的发现不支持tDCS诱导的任务性能变化依赖于区域微观结构完整性本身的变化的假设。然而,MD的降低与训练引起的功能连接性调节相关,这进一步强调了结构可塑性对大脑网络连接性的影响。这也强调了多模态成像的有用性,包括对灰质和白质可塑性的全面检查,以揭示不同效应水平的关系。
为了检查潜在的功能连接性调节,我们使用静息态fMRI进行了基于种子的FC分析。我们发现在阳极组相比于假刺激组中,前额叶的额顶网络的FC增加。在单次tDCS应用期间和在老年人的工作记忆训练后的重复tDCS会话中,已经观察到类似的FC调节。Nissim和他的同事发现,由于tDCS伴随的工作记忆训练,目标前额顶叶网络内的FC增加。已经显示出前额顶叶连接性的增强支持工作记忆的处理和容量。我们之前研究了重复的结合tDCS加训练会话,如视空间记忆的神经效应。在tDCS组相比于假刺激组中,显示出记忆网络连接性增加,表明一致的网络内活动是记忆功能的基础。支持并扩展了这些和以前的发现,我们在这里显示,通过tDCS,双侧前额区域之间的功能耦合——前额顶叶网络的一部分——增加,这表明tDCS目标神经网络的同步调节是tDCS效应的机制之一。通过使网络中心之间的活动更加协调/同步,tDCS结合重复会话可能产生(可能是长期的)转移效应。在我们的数据中,我们没有观察到FC变化与转移任务中行为性能提升的关联。缺乏线性关联可能指向关系的复杂性与其他影响因素(如基线FC对行为调节的影响),或者可以通过tDCS对不一定涉及任务的不同大脑区域的非特异性效应来解释。以前的证据表明,tDCS可以诱导超出刺激部位的网络级变化,这在横向和纵向研究中都得到了证实。此外,有人争论,特别是与特定正在进行的任务活动的交互可能增强tDCS效应的特异性。实际上,我们观察到FC变化与训练任务本身的行为性能提升的关联,这更直接地与实际的大脑刺激干预(即,直接由tDCS目标的任务网络)相关。这个联系强调了tDCS诱导的功能网络改变对正在进行的任务活动的特别重要性。
我们研究的一个限制是样本量相对较小。特别是在大脑-行为关联的背景下,可能需要大样本量才能使观察到的关系可靠/可复制。然而,干预研究的神经影像数据最有可能使用精心设计的范例和测量良好定义的认知过程产生较大的效应大小,重要的是,它们允许建立人类大脑和行为之间的因果关系。因此,尽管样本量小,但可复制性并不一定受限。鉴于我们的相关方法的探索性质,用于揭示神经调节水平和通过tDCS加训练的行为增益之间的联系,我们的发现为未来研究tDCS中特定的大脑-行为关系提供了发展假设的路径。
总结:
总的来说,本研究推进了对非侵入性大脑刺激结合重复训练干预的神经生物学后效应的理解,并显示出tDCS在多个层面上发挥其效应,包括白质束和灰质区域的微观结构特性以及远距离大脑区域之间的协调活动。这种神经-胶质网络的快速重塑和远程信号传导作为神经调节的结果,可能是功能效应的基础,如它们与观察到的性能提升的(部分)关联所示。我们的发现鼓励未来的研究更详细地评估人类大脑中微观结构变化的动态特性,对于tDCS辅助学习,以更短的时间框架进行DTI扫描。除了重塑的时间尺度,未来的研究还需要探索区域差异,确定当应用于其他网络时,神经调节是否会产生类似的调节。此外,目前还不清楚本队列的发现是否适用于其他(患者)样本,因为神经调节可塑性可能会因不同疾病中的大脑变化而有所不同。未来研究的见解将进一步增加对微观结构和大脑网络水平的知识,以及对刺激反应性的决定因素。在随后的步骤中,这些知识可能有助于开发更持久的效果,并可能个性化刺激参数,包括电极的最佳位置和刺激强度,以最大化实验和临床应用中的功能益处。