探索神经退行性疾病中功能障碍的有前景的工具:fNIRS

本文旨在评估使用近红外光谱(NIRS)在痴呆症中的适用性,作为这一人群的诊断和研究工具。从识别的800篇关于痴呆症和前驱阶段使用NIRS的文献中,评估了88篇研究。这些研究采用了一系列任务来测试记忆(29篇)、词汇检索(24篇)、运动(8篇)和视觉空间功能(4篇),以及探索静息状态(32篇)。在这些领域中,痴呆症表现出减弱的血流动力学反应,通常局限于大脑的额叶区域,并缺乏任务适当的额叶偏侧化。前驱阶段,如轻度认知障碍,表现出混合结果。识别出伴随减弱的功能反应或高激活的减少的认知表现,后者表明在痴呆症阶段不存在的代偿反应。尽管有明确的证据表明痴呆症和前驱阶段的大脑氧合发生了改变,但关于这些变化性质的共识难以达成。这可能部分是由于应用NIRS到痴呆症的光学技术和处理方法缺乏标准化。需要进一步的研究来探索更自然的环境和更广泛的痴呆症亚型。发表于Ageing Res Rev杂志

本文亮点:

  • 近红外光谱(NIRS)具有成为痴呆症神经监测工具的潜力。

  • 痴呆症患者的功能性血流动力学反应呈现出减弱。

  • 在痴呆症的前驱阶段,已观察到低度激活和高度激活两种现象。

  • 与其他成像替代方案相比,NIRS更容易被患者接受,并且能够进行更自然的任务。

引言

      痴呆症是一种临床综合症,其症状包括记忆、语言和执行功能问题,最终是由于神经元损失引起的。痴呆症最常见的原因是阿尔茨海默病(AD),其特点是淀粉样斑块、神经纤维缠结、记忆障碍、皮层萎缩和海马萎缩(Arvanitakis等,2019)。其他退行性痴呆症形式包括具有Lewy体的痴呆症(DLB),其特点是Lewy体包涵运动症状,额颞痴呆症(FTD),与额颞退行性相关,以及血管性痴呆(VaD),由缺血等血管损伤引起(Arvanitakis等,2019)。痴呆症是全球残疾的主要原因(世界卫生组织),部分原因是其发病率的增加(Nichols等,2022)以及对独立生活和认知功能的有害影响。因此,开发新的检测和治疗工具是当务之急。

      由于痴呆症是一种进行性疾病,在症状出现之前,大脑中被认为会发生几种结构性变化(Beason-Held等,2013)。因此,轻度认知障碍(MCI)等前驱阶段是早期干预的关键目标。支持这一点的是,大约16%的MCI在一年内恢复到正常认知(Koepsell和Monsell,2012)。然而,当前用于检测早期认知下降的最常见方法,即认知测试,是不够的。这一点由它们报告的特异性和敏感性的广泛变化得以证明(Mitchell,2013)。这些测试过于简化,引入了“任意”的截止值,并受到注意力和动机的高度影响(Brown,2015)。因此,无法有效地检测早期认知下降(Elkana等,2015),从而阻止了在不可逆损伤之前识别患病风险的个体。成像和脑脊液生物标志物方面的进展正在迅速发展,然而,临床使用缺乏特异于大脑、低成本和易于获取的生物标志物。像磁共振成像(MRI)和正电子发射断层扫描(PET)这样的成像技术是侵入性的、昂贵的,并局限于专家中心。因此,这些技术在护理途径中并不是常规可用的,因此只能提供患者状态的一个快照。相反,脑脊液生物标志物不能提供大脑区域信息。

      尽管像MRI和PET这样的技术存在实际局限性,但已经付出了大量努力来将它们用于生物标志物的开发。例如,功能性磁共振成像(fMRI)已经识别出默认模式网络(DMN)和内侧颞叶活动的改变,但在前驱阶段的结果不一致(Sperling,2011)。值得注意的是,文献中有关早期阶段以超活化或减少去活化形式出现的代偿反应的矛盾报告,随后出现蛋白质聚集和低活化(Bakker等,2015年,Celone等,2006年)。另一方面,PET已经帮助识别出使用18-2氟-2-脱氧-D-葡萄糖代谢示踪剂的痴呆症中明显可区分的减少葡萄糖代谢模式(Young等,2020年)。额外的工作还揭示了痴呆症与血管功能障碍之间有强烈的关联。这种功能障碍包括神经血管解耦、动脉硬化、增加的脉动性、低灌注、血脑屏障功能障碍和自动调节受损(Toth等,2017年)。这些变化被认为是在前驱阶段之前出现的,并部分地推动了后来的神经元损伤,从而导致领域特异性的损害和二次神经代谢功能障碍(Chung等,2017年)。

     与其同行相比,一种相对尚未确立并处于起步阶段的成像技术是近红外光谱(NIRS)。NIRS是一种非侵入性的神经成像技术,它使用近红外光来通过利用大脑中分子的不同吸收光谱来测量大脑氧合。在近红外范围(650-950 nm)的一个光学窗口内,氧合血红蛋白(HbO)和脱氧血红蛋白(HbR)是光的主要吸收者。NIRS通过将两个(或更多)波长的光照射到大脑中,并使用检测到的光衰减来估计HbO和HbR的浓度,从而通过捕获血流动力学反应来量化大脑活动。在连续波NIRS中,由于吸收引起的光衰减与由于未知散射效应引起的衰减无法区分,因此只能测量相对于基线的浓度变化。

      NIRS非常适合广泛的临床应用,因此可能对痴呆症研究特别有益,尤其是在这是一个伴有高发病率的合并症的人群中(Bunn等,2014年)。与MRI和PET等或许更为人所知的技术相比,NIRS有多个实用优势:它是非侵入性的、容易承受、低成本、便携式的,且易于设置和使用。这意味着它可以用于自然测试环境,如户外或床边,从而让更多种类的受试者能够参与,无论是从社会经济角度(因为不需要去医院)还是从可访问性角度(因为它几乎没有物理限制)。NIRS的另一个重要优点是其对运动的相对低敏感性,使得能够采用更具生态有效性的任务。这种对测试受试者和实验范式的缺乏限制对于可推广性有重要的意义。这在痴呆症中尤为相关,因为像MRI这样的方法很难研究诸如运动障碍之类的症状。

     关于如何使用NIRS来研究痴呆症,NIRS可以提供大脑特定区域的氧合(对于HbR和HbO)和代谢的时间过程,后者是通过使用宽带NIRS(Bale等,2014年)来量化细胞色素c氧化酶的氧化还原状态。因此,这种技术可以提供有关大脑如何为维持功能所需的神经元提供资源,以及神经元如何有效地使用这些资源的信息。由于NIRS信号本身编码了重要的生理信息,例如神经-胶质-血管成分的整合,通过应用信号处理技术(West等,2019年),例如,NIRS能够探索像神经血管耦合这样的生理过程。例如,到达峰值的时间反映了神经血管介质、血管运动反应和氧提取效率的作用。此外,虽然fMRI和NIRS都调查血氧水平依赖性反应,并因此可以研究网络级活动,但NIRS具有更高的时间分辨率和额外的实用优点(即其便携性、低成本和可用性)。因此,NIRS可能有助于痴呆症的早期检测,因为它更适合用于功能成像,并提供其他神经成像技术无法提供的大脑氧合和代谢的生物标志物。

     本文旨在回顾NIRS在痴呆症中的应用。为此,综合了先前文献中的数据,并评估了其研究结果的临床价值。通过这些目标,为NIRS在痴呆症中的适应提供了未来的方向。此外,鉴于对使用NIRS进行衰老研究(Agbangla等,2017年)的日益增长的兴趣,对其在最常见的与年龄相关的疾病之一的应用进行全面调查被认为是必要的。

      考虑到先前的fMRI文献(Sperling,2011年)以及NIRS的诸多实用优点,我们假设NIRS有潜力成为通过检测痴呆症、前驱阶段和对照组之间的大脑氧合和代谢差异来诊断和预后管理痴呆症的标准护理方法。具体而言,我们预计在静息状态和激活任务中观察到痴呆症的低灌注和低激活(反映为减弱的血流动力学反应)。我们假设这将伴随着在前驱阶段的超活化,符合使用MRI观察到的早期阶段的“断点”假设(Dounavi等,2021年)。如果没有观察到组间差异,或者无法达成共识,我们预计在进一步检查后,应用的NIRS方法将没有为这一临床人群适当地进行调整,部分地解释了这样的结果。

2. 方法

       根据首选报告项目的系统评价声明(Page等,2021年)(PROSPERO注册号CRD42021297315)制定了一个审查协议。随后,在2023年2月1日使用以下搜索词对MEDLINE(1946–2021)、Embase(1947–2021)和PsychINFO(1806–2021)进行了系统搜索:(认知障碍或认知紊乱或认知下降或血管性痴呆或认知功能障碍或神经认知障碍或阿尔茨海默症或痴呆症或AD或FTD或DLB或LBD)和(近红外光谱或近红外光谱或NIRS或氧合血红蛋白或组织氧合指数)。

     搜索结果使用Covidence(Veritas Health Innovation Ltd.;澳大利亚)存储并进行了去重。两位作者(EB,SS)独立筛选了相关文章的摘要和标题,由第三位审稿人(GB)解决了冲突。然后评估了全文以确定是否纳入。涉及诊断为痴呆症或处于前驱阶段的人类的研究,以及独立测试临床组的病例对照研究都被纳入。会议摘要、动物研究、评论、研究方案和非英语研究被排除。通过交叉引用包括研究的参考文献,确定了其他研究。

      使用纽卡斯尔-渥太华量表(Wells等,2009年)评估了病例对照研究的质量,使用JADAD量表(Jadad等,1996年)评估了随机对照试验的质量,以及使用国家心脏、肺和血液研究所质量评估工具(National Heart Lung and Blood Institute,n.d.)评估了观察性队列研究的质量。选择这些质量评估量表是因为它们是各自研究类型中最广泛使用的(Ma等,2020年)。该评估的结果在附录(图A1)中提供。

数据提取和分析

      两名审稿人(EB,SS)提取了包括研究的数据,并使用Excel(Microsoft Corporation)进行存储。提取的信息包括:标题、第一作者姓名、发表年份、发表期刊、实验范式、队列特征、样本大小、结果摘要、NIRS参数和NIRS设备。这些信息在附录中提供的表格中进行了总结。由于研究的临床人群、使用的方法和呈现的数据存在异质性,因此无法进行元分析。包括的研究根据(1)认知领域和(2)研究的临床人群进行了分类。然后在这一框架内总结了每项研究的主要结果。计算了报告痴呆症或前驱阶段与对照组之间有显著差异的包括研究的比例。值得注意的是,如果研究中的任何单一结果报告了组间存在显著差异,则该研究被分类为报告组间差异。这样做是因为大多数进行的统计分析和报告的结果在各个研究中都没有标准化。此外,还考虑了与临床和行为评分的相关性,以及使用的NIRS方法的详细信息。然后,通过对这些信息的批判性分析,可以确定NIRS数据的临床价值。

3. 结果和讨论

3.1 搜索结果

       搜索共找到800条记录(图1)。经过标题和摘要筛选后,有138项研究符合全文筛选的资格:其中24项是会议论文或摘要,22项研究因错误的患者人群被排除,7项因错误的研究设计被排除,1项是书籍章节。通过交叉引用,确定了4项研究,最终共有88项研究进行了最终评估。

图1. PRISMA流程图,该图描述了每个选择阶段的记录数量。

      自从1993年第一篇使用NIRS研究痴呆症的论文(Hoshi和Tamura,1993年)发表以来,该领域发表的论文数量逐渐增加(图2)。值得注意的是,在1998年到2004年之间发表的研究存在一个间隙。这可能是因为在2004年之前发表的三篇研究中有两篇都使用了NIRO 500系统(Hock等,1996年,Hock等,1997年),第三篇使用了组织氧合仪(Fallgatter等,1997年),而当时缺乏商业上可用的NIRS研究系统。尽管如此,在这些年份附近,NIRS研究的数量普遍存在不足(Yan等,2020年)。从那时起,商业上可用和“用户友好”的系统,如Artinis Medical Systems的系统,有了显著的增加和改进,现在主要是为神经科学研究而设计的。

图片

图2. 使用NIRS研究痴呆症的研究数量的累积直方图

      包括的研究采用了多种方法使用NIRS来描述痴呆症及其前驱状态,包括记录静息状态(32项研究,表A1)和采用测试词汇检索(24项研究,表A2)、记忆(29项研究,表A3)、运动(8项研究,表A4)和视觉空间功能(4项研究,表A5)的任务,以及奇异刺激范式(13项研究,表A6)这样的任务。

3.2 NIRS能够检测痴呆症、前驱人群和对照组之间的差异

      与我们最初的假设一致,我们观察到大多数包括的研究成功地使用NIRS来识别痴呆症或前驱阶段与对照组之间在脑氧合方面的显著差异(约86.4%的研究),支持其作为目前使用的方法(如MRI)的标准护理替代方案。相反,没有任何研究使用NIRS来测量神经代谢,因此尚需确定NIRS是否能够检测这些人群之间在神经代谢方面的差异。下面将根据它们探索的认知领域对这些研究及其分析方法进行讨论和批判性评价。

3.3 在不同的认知领域,痴呆阶段观察到低灌注和低激活,前驱阶段结果复杂
3.3.1 静息状态下的脑氧合在前驱阶段有所降低

表 A1包括在痴呆症和前驱阶段报告静息态近红外光谱数据的研究特征。

图片

图片

       总共有32项研究探讨了静息状态下的脑氧合(表A1),这些研究使用了各种各样的设备、实验范式和分析方法。其中,有六项研究测量了组织氧合指数(TOI)(Viola等,2013年;Marmarelis等,2017年;Liu等,2014年;Tarumi等,2014年;Li等,2022年;Viola等,2014年)。这是一个在临床上常用的指标,它提供了一个绝对组织氧饱和度的测量值,包括动脉和静脉,来自单一测量位置。几项研究发现,与对照组相比,遗忘型轻度认知障碍(aMCI)(Viola等,2013年;Tarumi等,2014年)和认知受损个体(Li等,2022年)的TOI(组织氧合指数)降低。支持其临床应用的是,aMCI中TOI的降低还与较差的迷你精神状态检查(MMSE)(Viola等,2013年)和记忆分数(Tarumi等,2014年)相关。

       TOI也被认为是一种用于研究治疗效果的氧合标记,然而TOI在这方面的价值尚不明确。两项研究观察到,与咪达唑仑(midazolam)给药后的阿尔茨海默病(AD)相比,TOI的反应性可以忽略不计(Tatsuno等,2021年;Morimoto等,2022年),而(Viola等,2014年)观察到AD在脑再灌注康复治疗中的TOI增加,同时MMSE分数也有所改善。观察到的TOI变化的不明确性可能是由于设备内部变异(Kleiser等,2016年)造成的。此外,TOI通常以组织饱和度的百分比形式报告,这虽然对于快速的临床评估是有用的,但提供了很少关于这种饱和度值背后的生理过程的信息。许多研究也只从单一测量位置记录了TOI,忽略了氧合的空间变化。

       另一种常用的测量静息状态氧合或者说脑血管反应性(即快速血管扩张时存在的HbO增加)的方法是通过坐-站动作或CO₂挑战。使用这种范式的研究对于痴呆症、MCI和对照组之间反应差异的结果是复杂的(van Beek等,2012年;Marmarelis等,2021年;Babiloni等,2014年)。然而,在CO2挑战期间,MCI(Ghafoor等,2019年)、VaD(Schwarz, Litscher和Sandner-Kiesling,2004年;Bär等,2007年)和AD(van Beek等,2010年)的氧合水平在针灸治疗和加兰他敏治疗下有所增加。破坏的脑血管反应性已经与AD中的几种潜在机制有关,包括被认为导致氧化应激和减少血管扩张因子产生的特征性Aß沉积,以及降低的胆碱能基调(Bär等,2007年)。相反,在没有这种挑战的情况下,静息状态数据未能区分AD(Ho等,2022年;Zeller等,2010年;Chiarelli等,2021年)和MCI(Soo Baik等,2021年)以及对照组。

       在痴呆症中一个感兴趣的生理过程是神经血管耦合(Shabir等,2018年),即维持神经元功能所必需的血流和神经代谢需求的协调,这可以通过多模态方法进行探索。尽管破坏的神经血管耦合长期以来一直是老化研究的一个关注领域(Turner等,2022年;Hutchison等,2013年),但只有两项研究分别在AD(Chiarelli等,2021年)和aMCI(Babiloni等,2014年)中探讨了这一点。这些研究使用脑电图(EEG)-NIRS来识别AD中HbO浓度变化和EEG功率之间的解耦(Chiarelli等,2021年),以及aMCI中血管反应性差和EEG相干性之间的关联(Babiloni等,2014年)。然而,这些研究由于缺乏特定受试者的解剖学信息和低通道数而受到限制。

3.3.2. 在前驱阶段和痴呆阶段,计算方法识别出静息状态下的皮层失调,但这些方法有几个局限性

      文献中报告了多种计算方法,旨在使用静息状态数据来区分临床群体(图3a)。多项研究探索了网络连接性,其中许多研究识别出痴呆和前驱阶段的干扰,但其性质尚未明确定义。这部分原因是由于各研究用于量化连接性的多样化方法。其中一种方法是“有效连接性”,即一个大脑区域的活动对另一个区域的因果影响。在多个区域(包括双侧前额叶皮质)中发现MCI的有效连接性降低,其中背外侧前额叶皮质与其他感兴趣区域之间更强的耦合与更高的认知分数有关(Bu等,2019年)。或者,可以通过计算信号时间序列之间的相关系数来量化连接性。使用这种方法,与对照组相比,MCI中发现了增加(Nguyen等,2019年)和减少(Zhang等,2022年)的连接性。Zhang等人(2022年)得出结论,这种减少的连接性与MCI中低灌注和低代谢的证据一致(Li等,2015年)。然而,这与前驱阶段中用于支持下降的认知功能的代偿反应的假设直接相反,该反应在痴呆阶段失败(Østergaard等,2013年),即“断点”(Dounavi等,2021年)。

图片

图3展示了多个方面,包括:(a)个体参与近红外光谱扫描的情况(来源:Yang等,2022年);(b)在对照组、轻度认知障碍(MCI)和阿尔茨海默病(AD)中观察到的最高静息状态功能连接性变异性(Q)(来源:Niu等,2019年);以及其他任务和血流动力学响应的示意图。

      以前的研究还计算了NIRS信号的“熵”(即复杂性),这是一个被认为反映认知能力的指标。在AD中观察到信号熵降低,这与Niu等人(2019年)的发现一致,他们发现这一现象主要出现在默认模式网络(DMN)、前额-顶叶和腹/背注意网络中(Li等,2018b年)。相反,在非常低频带(0.008-0.1 Hz)中观察到信号熵增加,这也在AD中被识别出来(Ferdinando等,2022年),这被认为表示脑血管运动波的变化增加,可能表明AD与对照组相比,血管直径的变异性更大。

      关于感兴趣的区域,MCI和AD都显示出在前额叶、顶叶和枕叶皮层中的长距离连接以及在DMN和前额-顶叶网络中的动态功能连接性(考虑到连接性的时间变异性)的干扰(Zhang等,2022年;Niu等,2019年)(见图3b)。这与Keles等人(2022年)的观察一致,他们认为,在静息状态下,前额-顶叶网络(Gratton等,2018年)的一部分,即背外侧前额叶皮质的活动,是AD和对照组之间的关键区别因素。

      另一个在医疗行业内迅速增长的重要研究领域是将机器学习应用于神经影像数据。尽管如此,在包括的研究中,只有少数(13项)应用了机器学习于NIRS(Cicalese等,2020年;Ho等,2022年;Kim等,2021年;Oyama等,2018年;Yang和Hong,2021年;Yang等,2019年;Yang等,2020年;Yoo和Hong,2019年)。此外,只有一项研究专注于连续变量的预测(Oyama等,2018年),其余的则分类了痴呆阶段或任务表现。大多数研究使用了如支持向量机和线性判别分析等简单模型,而最近的研究则通过使用更复杂的机器学习或深度学习模型,展示了更高的痴呆诊断分类准确性(Ho等,2022年)。

      关于如何将机器学习应用于NIRS,有四项研究对静息状态数据进行了分类,其中两项发现,与使用去氧血红蛋白(HbR)相比,使用氧合血红蛋白(HbO)更准确地将AD或MCI与对照组区分开来(Yang和Hong,2021年)。这次回顾中唯一使用宽带NIRS的研究对AD、MCI和对照组进行了光谱分类,发现895 nm处的特征最能区分AD和MCI(Greco等,2021年)。这一指标的含义尚不清楚,因为作者无法确定导致这一峰值的生物物质。此外,机器学习还在识别具有特别高预测准确性的感兴趣区域和功能连接方面表现出前景。例如,Zhang等人(2022年)将右侧前额叶与左侧枕叶之间的长距离连接识别为aMCI的潜在生物标志物。

      然而,到目前为止,所有的研究都存在一个问题,除了四项专注于多类分类的研究外,它们主要集中在MCI/AD和对照组之间的二元分类上。在进行多类分类的研究中,Chiarelli等人(2021年)使用了神经血管耦合强度的估计和多元线性回归方法来将AD与对照组区分开来。与Cicalese等人(2020年)的观点一致,使用组合的EEG-NIRS特征能提高分类准确性(Chiarelli等,2021年)。然而,仅使用NIRS信号也报告了较高的分类准确性。Kim等人(2022a年)使用随机森林分类器模型,以嗅觉刺激期间记录的左右前额叶信号之间的差异作为输入,展示了超过90%的预测准确性。

      大多数讨论的研究受到小组规模小和组不平衡的限制,这些不提供足够的训练样本来构建足够稳健的模型。许多研究也表现出低多类预测能力,尽管有了更大量的数据,可以用更高的准确性实现预测和更细粒度的分类任务。在大多数讨论的研究中,都使用了简单的信号特征集,尽管已经证明,包含空间和时间信息的工程特征能产生具有更高准确性的预测模型(Yang等,2020年;Zhang等,2023年)。最后,没有一项研究专注于可解释的机器学习,因此分类决策路径以及用于做出特定诊断的信号指标不能被医生轻易评估。

3.3.3. 在词汇检索过程中,无论是在前驱阶段还是在痴呆阶段,都明显出现了血流动力学反应的减弱

表 A2 报告与痴呆症患者及其前驱阶段的词汇检索相关的近红外光谱数据的包括研究的特性

图片

图片

       所有评估词汇检索的研究(24项,表A2)都使用了口头流利性任务(VFT)或其修改版本(图3c)。这是一个在痴呆症研究中经常使用的范式,其中受试者必须在一个类别(“语义”)或以特定字母开头(“语音”)的范围内生成单词。总体而言,临床组通常比对照组表现差,这在AD(Fallgatter等,1997年;Herrmann等,2008年;Metzger等,2016年;Yap等,2017年)、MCI(Metzger等,2016年;Nguyen等,2019年;Yap等,2017年;Yeung等,2016a年)、无症状AD(Ho等,2022年)以及行为型额颞痴呆(bvFTD)(Metzger等,2015年)中都有体现。这种减少的行为表现伴随着痴呆(尤其是AD)中较小的血流动力学反应(Takahashi等,2015年;Arai等,2006年;Herrmann等,2008年;Hock等,1996年;Kato等,2017年;Richter等,2007年)。

     这种不足的任务适当激活也在前驱阶段(如MCI)中有所体现,表现为低激活(Yoo等,2020年),特别是在右顶叶区域(图3d)(Arai等,2006年),以及减少的左右半球连接性(Nguyen等,2019年)。然而,在使用HbO对MCI和对照组进行分类时,VFT并不是MCI的一个稳定指标,与n-back任务相比(Yang等,2019年)。支持这种缺乏诊断潜力的是,Soo Baik等人(2021年)发现MCI和AD之间没有与VFT相关的差异。此外,似乎没有明确的关联性,即血流动力学反应的幅度与MMSE评分(Arai等,2006年;Kato等,2017年;Kito等,2014年)或行为表现(Araki等,2014年;Hock等,1997年;Metzger等,2016年;Richter等,2007年)之间没有明确的关联。

       尽管在词汇检索任务(VFT)期间血流动力学反应的幅度可能在临床上没有用处(Takahashi等,2015年;Takahashi等,2022年),但空间激活模式可能能够区分健康老化和痴呆症,以及不同的MCI亚型(Yeung等,2016a年;Yoon等,2019年)。例如,AD和对照组之间的差异局限于前额和双侧顶叶区域(Hock等,1996年),而AD和MCI之间的差异则局限于右侧顶叶区域(Arai等,2006年)。同样,无论是在痴呆症(Fallgatter等,1997年;Richter等,2007年)还是在MCI(Yeung等,2016a年)中,激活不对称性的丧失也是明显的。然而,有一项研究发现,在对照组或MCI中都没有显著的偏侧化(Katzorke等,2018年)。偏侧化程度被认为是痴呆症的一个可能生物标志物,因为它被认为反映了为支持下降的功能而招募对侧资源(Yeung等,2016a年),这一点也得到了fMRI文献(Liu等,2018年)的支持。

3.3.4 在所有临床群体中,记忆任务期间都有低激活和高激活的证据

表A3报告与痴呆症患者及其前驱阶段的记忆功能相关的近红外光谱数据的包括研究的特性

图片

图片

      总体而言,有29个研究探索了记忆功能(见表A3),其中许多使用了n-back任务(13个),结果各异。这个任务评估工作记忆(WM)并检查前额区域,这使得它非常适合与NIRS一起使用,因为它避免了通过头发的干扰。在这个任务中,受试者会看到一个字母序列,并必须指出呈现的字母是否与之前的字母相同(1 back)或者是之前的字母(2 back)(见图3e)。使用这个任务,两个研究观察到MCI中的血流动力学激活减弱(Yang等人,2019年;Yoo等人,2020年),从对照组到MCI,再到AD(Ho等人,2022年),而另外三个则没有发现MCI和对照组之间在功能激活(Soo Baik,2021年;Yoon等人,2019年)或连接性(Nguyen等人,2019年)方面的差异。有趣的是,有一项研究发现MCI与对照组相比有高激活(Yoo和Hong,2019年)。也许n-back任务的区分能力更为微妙:有证据显示,不同疾病阶段的WM(工作记忆)负荷调节是不同的。例如,某些研究仅在高WM负荷下观察到MCI和对照组之间的差异(Yang等人,2020年;Yeung等人,2016b年),而其他研究则只在对照组中识别出WM负荷调节(Ung等人,2020年;Vermeij等人,2017年)。

关于工作记忆(WM)任务期间血流动力学激活的临床价值

       大多数报告相关性分析结果的研究都发现HbO信号的幅度或功能连接性指标(Li等人,2020年)与行为或临床评分(Li等人,2018a年,Liu等人,2023年,Ni等人,2021年,Niu等人,2013年,Uemura等人,2016年,Yeung等人,2016年)之间存在正相关(见图3f)。也就是说,更高的氧合水平与更好的评分相关。令人鼓舞的是,使用卷积神经网络验证了n-back任务期间的血流动力学激活具有很强的诊断潜力(Yang等人,2019年,Yang等人,2020年)。此外,对n-back任务的反应可能是治疗反应的敏感标志,这一点通过氧合水平的增加得到了体现(Ghafoor等人,2019年,Khan等人,2022年,Ni等人,2021年)。这些结果支持了在早期阶段出现代偿性高激活以补偿功能下降的假设。然而,也许令人惊讶的是,两项研究发现,在MCI中,光生物调制疗法(Chan等人,2021年)和基于VR的训练(Liao等人,2020年)都与前额激活的减少以及记忆性能的提高有关。

其他工作记忆任务也支持代偿性高激活的进一步证据

      来自使用其他WM任务(如延迟匹配样本任务或数字口头跨度任务)的研究也支持了代偿性高激活的观点。与对照组相比,在AD(Perpetuini等人,2017年)和认知下降(Yu等人,2020年)中观察到了更高的连接性(Li等人,2020年)、更大的HbO变化(Ateş等人,2017年,Yu等人,2020年)和更大的熵(Perpetuini等人,2017年)。然而,也有几项研究在AD(Ghafoor等人,2019年,Li等人,2019年,Li等人,2018b年,Oboshi等人,2016年)、MCI(Khan等人,2022年)以及特别是在aMCI(Li等人,2020年,Liu等人,2023年,Niu等人,2013年,Uemura等人,2016年)中识别出低激活,这与使用fMRI(例如,Lou等人,2015年)和EEG(例如,Fraga等人,2018年)进行的早期工作是一致的。

3.3.5. 在运动活动中,一些证据表明临床组存在低激活,但所用任务过于简单

表A4报告与痴呆症患者及其前驱阶段的运动功能相关的近红外光谱数据的包括研究的特性

图片

      在测试运动功能的八项研究中(见表A4),有六项使用了可穿戴NIRS设备进行双任务行走(Doi等人,2013年,Nosaka等人,2022年,Takahashi等人,2022年,Talamonti等人,2022年,Teo等人,2021年,Wang等人,2022年),其中五项仅从前额皮质记录数据。双任务行走范式涉及执行单一任务(例如行走)和双任务(例如在行走时完成认知任务)。使用此任务的研究结果表明,与记忆功能(Ho等人,2022年)或词检索(Yap等人,2017年)不同,痴呆症严重程度、大脑氧合和运动性能之间存在非线性关系。例如,有记忆问题的人在双任务行走期间的激活水平比对照组高,而患有痴呆症的人在单任务行走中的激活水平比对照组和有记忆问题的人都高,但在双任务行走中的激活显著降低(Teo等人,2021年)。关于直接评估运动功能的研究,没有使用自然任务,如社交互动,而是使用了简单的运动任务,如握手动作(Tak等人,2011年)和手指敲击(Yang等人,2022年),这些研究显示AD组与对照组和MCI组相比氧合水平降低。

3.3.6. 更具挑战性的视觉-空间任务可能揭示更明显的缺陷

表A5 报告与痴呆症患者及其前驱阶段的视觉-空间功能相关的近红外光谱数据的包括研究的特性

     有四项研究探讨了视觉-空间处理(Haberstumpf等人,2022年,Kito等人,2014年,Tomioka等人,2009年,Zeller等人,2010年)(见表A5)。其中三项使用了角度判别任务,如Benton线方向任务(见图3g),该任务要求参与者判断呈现线条的方向(Benton等人,1978年)。然而,这些研究产生了不同的结果(Haberstumpf等人,2022年,Kito等人,2014年,Zeller等人,2010年)(见图3h),这可能是由于各研究之间缺乏标准化方法论。例如,Zeller等人(2010年)使用了一个综合的“痴呆”患者组。各组之间没有性能差异(Kito等人,2014年,Zeller等人,2010年)也可能表明,需要更具挑战性的视觉-空间任务来揭示NIRS数据中的差异。

3.3.7. 少数研究使用了感觉刺激和奇异任务,但没有明确共识

表A6报告与痴呆症患者及其前驱阶段的其他功能相关的近红外光谱数据的包括研究的特性

图片

       四项研究通过使用NIRS(见表A6)探索了音乐(Tanaka等人,2012年)和嗅觉刺激的感觉反应,后者能够区分健康老化与前驱期(Kim等人,2022b年)和痴呆阶段(Fladby等人,2004年,Kim等人,2022a年)。另外,有八项研究采用了奇异任务。其中三项在MCI和对照组之间的血流动力学反应(Soo Baik,2021年,Yang等人,2020年)和连通性(Nguyen等人,2019年)方面没有发现差异,而另外三项观察到MCI(Yang等人,2019年,Yoo等人,2020年)和AD(Ho等人,2022年)中前额激活减少,有一项研究发现MCI组与对照组相比,总体HbO增加更多(Zhang等人,2023年)。由于大多数这些研究使用了相同的任务设计和患者组,除了Ho等人(2022年)使用了一个四分钟的任务块,这些混合结果令人惊讶。

3.4. 所使用的研究方法不适用于痴呆和前驱期人群

      总体而言,在认知领域中,大多数研究观察到痴呆组、AD、VaD和FTD中HbO和HbR相对浓度变化的幅度减小。这与使用PET(Costantini等人,2008年)识别的低代谢、新皮质EEG的整体“减缓”(Dringenberg,2000年)以及使用fMRI在痴呆中观察到的低激活(Sperling,2011年)的结果一致。在测试前驱期阶段,即MCI的52项研究中,32%未发现差异,8%发现增加,60%发现HbO和/或HbR浓度变化减少。这种缺乏共识与使用其他成像技术观察到的早期代偿反应的矛盾报告一致(Bakker等人,2015年,Celone等人,2006年)。

      考虑到某些领域,如静息状态,特别是与前驱期阶段有关的结果的可变性,研究人员调查了各研究中使用的研究方法,以确定方法论效率不足是否至少部分地是这种可变性的原因。一个模式浮现出来:实验设计和光学方法缺乏一致性、标准化和适当性,如下所述。

3.4.1. 光学方法没有考虑到痴呆阶段可能存在的大脑大小和形状的差异

      首先,没有一项研究考虑到痴呆和老年人常见的大脑大小和结构变化。由于大脑组织是一个高度散射的介质,近红外光只能穿透大约4厘米的组织。因此,NIRS只能从表层皮层层记录数据。然而,在痴呆中,广泛的皮层萎缩和退化(Harper等人,2017年)导致皮层与头皮之间的距离假定增加。这反过来可能导致数据仅从颅外组织记录,而不是从大脑组织记录。因此,结合特定主题的解剖数据,如结构MRI,进行源定位和信号重建是必要的,以避免表面功能差异是由解剖可变性或结构退化引起的。这在晚期尤为关键,当头皮到皮层的距离可以达到1.7厘米(Lu等人,2019年)。几项研究也没有将他们的对照组和患者群体进行年龄匹配(见图A1),这与没有纠正基线年龄相关的血管变化(例如,通过对血流动力学反应进行统计建模)一起,可能导致将血流动力学反应的时间动态的改变误归于神经活动的变化。

      同样,许多研究使用了稀疏(低密度)的NIRS阵列,即源和探测器以网格状模式排列。这不仅通常意味着几乎没有或直接没有短通道,而且光不能像在更高密度系统中那样深入穿透。更高密度的系统,由重叠的、可变长度的通道组成,产生更好的分辨率和更少的位置错误(White和Culver,2010年),并可能在痴呆中实现更好的灵敏度(Srinivasan等人,2023年)。高密度NIRS还可以与解剖信息结合,创建详细的大脑活动地形图,称为高密度扩散光学断层成像(HD-DOT)。尽管没有研究使用了HD-DOT,只有少数几项使用了高密度系统(例如,Soo Baik,2021年,Yoo和Hong,2019年),Talamonti等人(2022年)使用了DOT,Li等人(2019年)进行了源定位,然而,两者都没有使用特定主题的解剖信息来进行。

3.4.2. 早期病变群体高度异质,可能是观察到这一人群中结果多样性的原因

      大多数研究集中在AD(36项)和MCI(52项),很少探讨较不常见的痴呆亚型:只有三项在VaD中,一项在FTD中,DLB中没有。尽管如此,像MCI这样的早期病变阶段中的改变性质非常多变,特别是与早期代偿反应形式的超灌注和超激活有关(Merlo等人,2019年)。这些多变的结果是否反映了方法论上的差异,或者确实表明了在亚组或个体之间招募额外资源的能力存在真正的变化,尚不清楚。首先,这可能仅仅是因为直接比较MCI和AD的研究相对较少(12项)。此外,fMRI(Yetkin等人,2006年)和EEG(Trinh等人,2021年)在MCI中观察到的激活模式和受试者之间的变化程度也相似,这表明这一亚群存在固有的异质性。因此,研究中缺乏亚组划分可能导致这种多变的结果。这不是一个容易解决的问题:MCI很难诊断和分类为亚型(Díaz-Mardomingo等人,2017年),因为它在症状学(Lopez,2006年)和萎缩模式(Bell-McGinty等人,2005年)方面可能表现得相当不同。更进一步复杂化的是,fMRI文献表明,在静息状态和任务相关fMRI之间的早期阶段存在不同的代偿反应表现,任务相关fMRI的敏感性和可靠性尚未确定(Young等人,2020年)。在早期病变人群中,采用更高密度、更广覆盖的NIRS系统和改进的感兴趣区域选择也将提高敏感性(Srinivasan等人,2023年)。

3.4.3. 研究方法中明显缺乏标准化

      跨越各项研究的一个共同主题是实验方法缺乏标准化。这包括数据分析,由广泛的信号指标和统计方法的使用证明(参见表A6作为一个例子);实验设计,如基线和任务持续时间;以及数据收集,如探针位置。例如,几乎一半的审查研究没有提到运动负担,或者需要明确纠正运动以确保不会误解尖峰、基线偏移和低频漂移为生理相关的信号(例如,van Beek等人,2010年;Viola等人,2014年)。此外,即使在使用包含短通道的系统的研究中,也有几项没有进行短通道回归(例如,Bu等人,2019年)以消除头皮血流动力学的影响。这种缺乏标准化也更广泛地出现在NIRS研究中,其中处理NIRS数据的可调参数众多,可能导致“结果的误解和不可重复性”(Pinti等人,2020年;Hocke等人,2018年)。例如,目前尚不清楚使用HbO、HbR或两者来研究大脑活动(Pinti等人,2019年)或痴呆(Zeller等人,2019年;Katzorke等人,2018年;Yang和Hong,2021年)哪个更好。本次审查中的许多研究仅分析了HbO信号并丢弃了HbR,援引HbO具有更高的信噪比和与血氧水平依赖性fMRI(Cui等人,2011年)的更大相关性。尽管如此,人们正在努力为NIRS研究方法进行标准化,例如采用SNIRFs进行数据存储。

3.4.4. 进一步的未来方向

      除了上述的方法论问题之外,还有几个尚未探索的研究方向。例如,所有包括的研究都使用了连续波NIRS系统,除了Oyama等人(2018年)使用了一个时间分辨系统,以及Chiarelli等人(2021年)使用了一个频域系统。此外,也许令人惊讶的是,鉴于NIRS相对容易与其他成像方式集成,很少有研究这样做:一个PET,三个EEG,和一个fMRI。只有一个纵向研究探讨了随着疾病进展大脑氧合如何变化(Talamonti等人,2022年),其中探索更早期的阶段,如载脂蛋白E-4携带者(Katzorke等人,2017年),对于评估NIRS的临床价值是必要的。

       大多数研究也只从预先指定的感兴趣区域进行记录,限制了功能连接性分析。这在测量与任务相关的激活的研究中尤为明显,这些研究主要仅从额叶区域进行记录,即使在具有运动成分的任务中(例如,Takahashi等人,2022年),尽管AD和DLB中已经确认了后部退化(O'Donovan等人,2013年)。同样,很少有研究使用NIRS来探索运动症状(表A4)。这令人惊讶,因为NIRS对运动的低敏感性和缺乏物理限制,以及某些痴呆亚型(如DLB)的特征性运动症状(Emre,2003年),这些都不能使用像MRI这样的技术轻易探索。不过,可穿戴NIRS的出现相对较新,这可能解释了缺乏自然任务设计。最后,使用宽带NIRS来量化细胞内神经代谢(Bale等人,2016年)将对研究痴呆中的神经血管解耦非常有价值。

4. 结论

      总体而言,先前的文献识别出了痴呆、前驱阶段和健康老化之间的差异。这些证据表明,包括默认模式网络(DMN)和前额-顶叶网络(如Niu等人,2019年)在内的皮层组织发生了混乱,以及在认知领域普遍存在的低激活反应(如Li等人,2018b年,Niu等人,2013年),特别是在痴呆阶段。在前驱阶段,有几项研究发现了低激活反应(如Arai等人,2006年,Yoon等人,2019年),而其他研究则识别出可能存在的代偿性反应,即高激活反应(如Yap等人,2017年,Yoo和Hong,2019年)。除了痴呆中的减弱的血流动力学反应外,这些发现部分支持了前驱阶段存在一个“断点”的假设(Dounavi等人,2021年)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值