超越节点的网络神经科学

网络神经科学强调了神经元素(细胞、神经元群体和大脑区域)之间的连接属性。这种强调往往忽视了这些元素之间解剖学和功能上的连接。一个新的视角,即强调'连边(edges)'的视角,可能在解决网络神经科学中未解决的问题方面具有潜力。我们特别介绍了一种最近提出的'以连边为中心(edge-centric)'的方法,并回顾了其当前的应用、优点和局限性。我们还试图在这种方法与网络科学和神经影像学文献中先前提出的方法之间建立概念和数学联系。最后,我们提出了几个未来工作的方向,以扩展和精炼现有的以连边为中心的分析。本文发表在Trends in Cognitive Sciences杂志。(可添加微信号19962074063获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群)。

本文亮点:

  • 新的高阶大脑网络模型可以提供关于大脑组织和功能的新见解,同时有助于解决网络神经科学中尚未解决的问题。

  • 以连边为中心(Edge-centric)的模型将焦点从神经元素(节点)转移到连边(edges)上。

  • 连边时间序列是基于相关性的功能网络的精确分解,并有助于检测重叠的社区,同时提供以逐帧时间分辨率的时变连接性估计。

关键词:高阶网络;以连边为中心的网络科学;时变功能连接性;重叠社区结构;连通图;网络神经科学;超越节点的网络神经科学

      大量的努力已经用于跨时空尺度地绘制大脑连接性。连接模式可以表示为由节点和连边组成的网络,分别对应于神经元素(细胞、种群和区域)以及它们的功能和解剖学连接。大多数关于大脑网络的分析都集中在节点上,并量化了它们的度、中心性或社区。这与“大脑绘图”的历史相呼应,在这一历史中,神经元素用其细胞结构、功能和神经化学特性进行了注释。这种“以节点为中心”的重点有很多合理的原因。首先,它反映了至少一个世纪的实证观察,证明节点构成了处理/计算的基本单位,而连边则传递计算的结果。其次,它提供了一种自然的方式来将大脑分解为功能专一的单元,从而促进了关于大脑组织的基础发现,同时巩固了既定的神经科学概念。

      尽管基于以节点为中心的模型的二十年持续努力留下了许多未解之谜。系统级架构是如何从活动/连接性的时变波动中出现的?各个系统在多大程度上是重叠的或独立的?大脑“指纹”的起源是什么?如何利用它们来改善基于大脑的表型分析?

      解决这些问题可能会从观点的转变中受益。一种可能性是考虑更高阶的网络结构,其中结构是通过使用超图、单纯复形或多变量信息理论来量化的。或者,我们也可以将焦点转向与现有数据结构兼容,并保留如结构连接性和功能连接性(FC)这样熟悉且具有神经生物学依据的定义和概念,同时将连接性的概念扩展到更高的维度。这个框架可以被认为是“以连边为中心”的,因为它描述的是网络连边之间的相互作用,而不是其节点。这一框架产生了两个有用的构造:(i)连边时间序列作为连边权重的即时估计,和(ii)连边功能连接性作为所有连边对之间相似性矩阵的表示。在本文中,我们将介绍构建这两个方面的过程,回顾使用以连边为中心的网络所做的不断增长的发现,并讨论它们未来的应用和扩展以及潜在的局限性。

框1:

节点与连边为中心的网络

     每个网络都由节点和连边组成——系统的元素及其两两之间的相互作用。然而,这些组件的精确定义通常取决于研究者。这在任何网络分析中都是一个重要的决定,因为节点和连边的定义塑造了网络的结构,并有助于确定我们通过研究它可能获得什么洞见。

      在神经科学中,定义节点和连边通常意味着选择是否在体素或区块(细与粗尺度)的层面上建模连接性,并选择一个连接方式以及一个适当的衡量相互作用存在/不存在和权重的指标(结构性与功能性连接;在结构的情况下是流线计数或微结构属性;在功能的情况下是相关性、相干性、基于相位的测量或信息论测量)。

      此外,在定义网络时还需要考虑的另一个维度是相互作用的阶数。在大多数网络中,连边将一对节点相互连接。另一方面,更高阶的网络考虑将节点群组与其他群组相连接的连边。通常情况下,这些群组的大小是没有界限的(直到网络中节点的数量)。当这些群组被定义为二元组(连边)时,网络模型可以被认为是“以连边为中心”的,因为每个群组构成了一个网络连边。需要注意的是,当群组被定义为单个节点时,我们就恢复了传统的“以节点为中心”的网络。

      与选择区块划分或连接性指标对网络结构的影响相同,专注于更高阶的相互作用的决定也可以带来独特的洞见。目前有越来越多的方法可用于一般性地研究网络中的更高阶相互作用,还有其他方法专门为脑网络数据开发。随着越来越多的研究使用这些方法,更高阶网络的确切贡献以及它们在神经科学中用于理解脑组织和功能的作用将变得更加明确。

连边中心网络

构建“经典”的连边中心网络

     网络科学文献中充满了构建连边中心网络的方法。其中最为人所知的两种是所谓的连接相似性和线图方法(图1A-C)。

图片

图1:将以节点为中心的网络转化为更高阶的连边网络。

     (A) 由九个节点组成的模拟网络。以节点为中心和以连边为中心的分析不同之处在于,它们考虑的是节点(灰色圆圈)之间还是连边(红色方块)之间的相互连接。连边中心的分析为连边对之间分配权重。'链接相似性'方法考虑具有共享末端的连边对。两个连边之间的连接权重定义为未配对末端的邻居的标准化重叠。

    在(B)中,我们展示了一个使用边{2,3}和{2,4}的例子。这些边有一个公共的节点2,使得节点3和4成为未配对的末端(stubs)。边{2,3}和{2,4}之间连接的权重是通过计算节点3和4的邻居的Jaccard指数来得出的。另一种将节点级网络转换为边级网络的方法是通过线图(panel C)。这个过程涉及将节点级连接性表示为一个关联矩阵。关联矩阵的行和列分别对应于连边和节点。通过将关联矩阵与其自身的转置相乘,计算出线图。如果连边共享一个末端节点,它们将相互连接。

    (D) 社区检测算法通常将节点分配到不重叠的社区。当相同的算法应用于以连边为中心的网络时,它们将连边分配到不重叠的社区。连边社区可以投影到节点上,从而使节点与多个社区有关。

    (E) 最近的工作集中在时间序列数据的相似性的方法上。连边时间序列是作为z标准化节点时间序列的乘积来计算的。连边连接性衡量连边时间序列对之间的相似性。     

      两种方法都是为了更深入地理解大脑网络的结构和功能。在这里,我们有一个由多个节点(可能是大脑区域或神经元)组成的网络,这些节点通过边(可能是神经突触或功能连接)相互连接。在“链接相似性”(link similarity)方法中,我们关注那些有共享“末端”(也就是连接同一节点的两条边)的边。这些边的关联强度是通过计算它们未配对末端(也就是不共享的节点)的邻居之间的相似度来确定的。这样,我们就能得到一个“链接相似性矩阵”,它能告诉我们原始大脑网络中各个边之间的相似度或关联程度。另一方面,“线图”(line graph)方法则是通过一种叫做“关联矩阵”(incidence matrix)的结构来实现的。在这个矩阵中,每一行都代表一个边,而只有与该边相连接的节点对应的列会有非零值。通过计算这个矩阵和它的转置的乘积,我们可以得到一个新的“线图”,在这个图中,如果两条边有一个共享的节点(末端),它们就会被连接起来。

     使用这些方法生成的矩阵是以连边为中心的,因为感兴趣的单位——WE(edge weight,连边权重)中的节点——对应于WN(Nnodes × Nnodes connectivity matrix, WN)中的连边。以连边为中心的网络可以与以节点为中心的网络完全相同地处理,尽管它们具有一些独特的优点。WE中的局部度量被映射到WN中的连边。这在社区检测中尤其有用(网络划分为子网络的算法)。当应用于WE时,每个连边被分配到一个不重叠的社区。然而,连边社区可以投影到节点上,从而允许重叠的节点社区(图1D)。

针对时间序列数据的连边中心网络

     虽然连边中心的方法已经存在超过十年,但在脑网络数据分析中的应用相对有限。这些现有方法通常需要大量的内存,并且主要适用于具有正权重的稀疏网络。这与网络神经科学中的常规做法存在一定的冲突,因为在该领域里,功能连接性(FC)通常被视为是全权重且带有符号的。

     如何生成一个既能捕捉到线图/链接相似性的精髓,又与定义节点中心脑网络的既定方法相一致的连边中心网络?一种方法是对功能连接性(FC)进行时间上的“展开”(见附录2)。这个过程会为每一对节点{x, y}生成一个共波动时间序列:

图片

变量 xz(t) 表示在时间 t 时节点 x 的z标准化时间序列的值。

框2:推导连边时间序列和连边功能连接性

      如何生成一个不仅捕捉到线图/链接相似性的精髓,而且与神经时间序列数据兼容,并与定义节点中心脑网络的既定方法相一致的连边中心网络呢?考虑一下单一的功能连接。虽然有很多方法来估计其权重,在人类神经影像学文献中,功能连接性(FC)通常被定义为双变量乘积-矩阵相关性。给定两个节点的活动时间序列,x = [x(1), ... , x(T)] 和 y = [y(1), ... , y(T)](见图1D),计算它们之间的相关性的过程是直接的:

(i) 将每个变量进行z标准化:

图片

 和

图片

 ,其中μx和σx分别是x的样本均值和标准差。

(ii) 计算逐元素的乘积:

图片

(iii) 求和并归一化以获得相关系数:

图片

       然而,假设我们省略了最后的求和步骤。这样做意味着失去了相关系数和FC的估计。然而,从(省略的)这个操作中,我们得到了一个新的构造:

图片

共波动或连边时间序列 这个时间序列中的元素索引了节点x和y之间的瞬时共波动。时间t告诉我们这种共波动何时发生,数量

图片

 告诉我们共波动的幅度,而sign(rxy(t))告诉我们共波动的极性(即x和y是否在同一方向上波动)。

      不仅仅关注单一的节点对(即一个连边),我们可以为所有节点对生成共波动时间序列。这样,我们就能得到一个维度为N帧数 × N连边的矩阵E。利用这些时间序列,我们能以与计算节点中心的功能连接(FC)相似的方式,构建以连边为中心的网络。具体来说,如果我们有两组时间序列,分别是rxy = [r xy(1), ... , r xy(T)] 和 ruv = [r uv(1), ... , r uv(T)],我们可以通过以下方式来评估它们之间的相似性:

图片

      由于其与(节点中心的)功能连接(FC)在结构上的相似性,我们将这一构造称为“连边功能连接”(eFC)。然而,eFC矩阵的维度(N连边 × N连边)要比其节点中心的对应物更大。与链接相似性和线图矩阵不同,eFC是完全加权和有符号的,从而保留了节点FC的另一个基本特性。值得注意的是,早期的研究已经提出了类似的构造,尽管这些研究使用了滑动窗口的时间变化功能连接(tvFC)来估计tvFC,因此其时间分辨率较低。

      rxy(t) 携带了关于连边 {x, y} 权重的时间分辨信息,可以解释为时间变化功能连接(tvFC)的一种度量。滑动窗口连接是估计 tvFC 的最流行方法。简而言之,在其最通用的形式中,该方法将长度为 W 的窗口中心定位在帧 t 上,以便前后的帧都落在窗口内。然后,仅使用这些观察值,估计所有节点对之间的 FC。窗口前进固定数量的帧(通常仅为单一帧,以便相邻窗口有 W-1 个共同帧),并重复该过程。对所有时间点执行此操作会产生一系列时间分辨的连接矩阵。注意,该过程要求用户指定窗口长度、窗口的形状(例如,方形、高斯、指数)以及连续窗口之间的重叠量。与这些基于窗口的方法不同,估计连边时间序列(eTS)是无参数的,不需要窗口化。

      人们可以为每个唯一的连边估计 eTS(边时间序列),从而得到一个维度为 N连边 × N帧的矩阵。使用这组时间序列,我们可以基于 eTSs 之间的相似性推导出一个以连边为中心的网络(见 Box 2)。由于其与 FC 在结构上的相似性,我们将这一构造称为连边功能连接(eFC)。eFC矩阵比其节点中心的对应网络要大得多,维度为N连边 × N连边,并且是完全加权和有符号的。

      第一项研究 eFC 的研究分析了来自三个队列的 fMRI 数据。作者发现,与经典的 FC类似,只要有足够的样本,eFC 矩阵就会稳定,并表现出高度的受试者特异性,从而提高了使用节点 FC所获得的可识别性。作者还报告说,eFC 是状态依赖的,因为它将静息状态与观看电影的数据区分开来。

      eFC 最有趣的特性是其社区结构,该结构指的是网络元素被算法划分为有意义的子网络。当投影到节点上时,连边社区会导致社区重叠。尽管这一属性在社区检测算法中并不少见,但在网络神经科学领域中仍然很少见,其中模块度最大化和 Infomap 是领域标准。这些方法继续用于划定“典型”大脑系统之间的边界。然而,当与功能引人注目的命名约定相结合时——例如,“视觉社区”或“体感运动模块”等标签——这可能会错误地给人一种印象,即社区的边界完全围绕着其命名功能的所有领域,反之亦然,社区本身只执行单一或狭窄的功能范围。此外,依赖硬划分往往会过度强调功能专业化的程度,并低估在综合大脑功能服务中重新配置或打破模块边界的需要捕捉到不同社区集之间重叠的网络模型可以自然地捕捉到这一功能组织的重要方面。

     连边社区的拓扑特性是什么呢?总体而言,它们类似于使用经典技术报告的那些。然而,节点参与连边社区的程度是分级的,类似于空间独立成分分析(ICA)图。也就是说,连边社区将其他节点集合“吸引”到已知的大规模网络中,形成新的综合结构(图 2)。一个特别著名的例子是默认模式网络连边社区,其拓扑结构与典型网络非常相似,但只弱地包含了来自感觉运动系统的节点。以这种方式,我们可以将连边社区视为传统节点级社区的一种细化。节点社区是一个极好的零阶近似,捕捉了大脑社区结构最强烈和最显著的方面。然而,它们没有捕捉到细粒度结构,包括部分社区隶属关系,这些都可以通过允许重叠的连边社区来捕捉。

图片

图2 描绘了连边社区和节点熵。

      连边时间序列(A)彼此相关,可以用于计算连边功能连接性(eFC)矩阵(B)。这个矩阵可以使用常规的矩阵聚类算法进行聚类。或者,连边时间序列也可以直接进行聚类。无论哪种情况,我们都会得到簇分配,其中每个连边都与单个簇有关联。在面板(C)中,我们按社区/簇标签重新排序了eFC 矩阵。这些标签是在连边层面上分配的,可以通过将 Nnodes × Nnodes 矩阵中的连边分配给相应的连边社区标签来可视化(D)。

    (E)为了将连边社区投影到单个节点上,我们计算与每个簇相关联的节点连边的比例。结果是一个与每个簇有关的节点隶属度的伪连续度量。

    (F)每个节点的重叠程度可以通过计算其熵来量化。与少数簇保持强烈隶属关系的节点往往具有较低的熵(向量底部的蓝色单元格)。与多个簇平等地有关联的节点往往具有较高的熵水平(向量顶部和中部的橙色单元格)。

      在面板(G)和(H)中,我们对比了使用连边为中心的方法获得的非重叠社区和重叠社区。面板(G)描绘了来自 Yeo 等人的“典型”系统标签。在面板(H)中,我们展示了投影到节点上的连边社区的示例。节点可以与给定社区有部分隶属关系,并且可以与多个社区有关联。

      缩写:Cont,控制网络;DMN,默认模式网络;SMN,感觉运动网络;Vis,视觉网络。

     社区重叠的程度在大脑各个区域之间有所不同,可以使用标准化的熵度量来量化。令人惊讶的是,重叠程度最高的区域集中在感觉运动和注意系统中,而联合网络则表现出较低的熵。这一模式与现有文献形成对比,其中像参与系数这样的社区重叠度量指出联合皮层具有最高程度的重叠。

eTS(边时间序列) 作为 tvFC(时间变化功能连接性)的估计 

      估计 eFC 会创建一个中间构造——“连边时间序列”(eTS)。eTS 最有用的属性之一就是作为 tvFC 的估计器。最早的 tvFC 研究使用滑动窗口来获得区域间相关性/相干性的“动态”估计。尽管这种方法很受欢迎,但它也有缺点,包括较差的时间定位能力和需要指定多个参数。

     eTS(边时间序列) 有助于解决定位问题。计算所有连边的 eTS 会产生一个 Nedges × Nframes 矩阵(图 3A,顶部)。这个矩阵的列索引给定时间的所有连边的共波动值。这些值可以重新排列以形成一个 Nnodes × Nnodes 矩阵的上三角形(图 3A,底部),从而得到全脑共波动的时间解析估计。与滑动窗口方法不同,eTS 是在没有参数化或窗口的情况下估计的。实际上,eTS 与滑动窗口 tvFC 的关联度相当有限。我们注意到,随着窗口大小的减小,这种对应关系在滑动窗口估计接近 eTS 的单帧时间尺度时会有所改善。然而,对于非常小的窗口尺寸,从滑动窗口技术获得的相关性估计变得高度不确定,对应关系也会减小。

图片

图 3:用连边时间序列(Edge Time-Series)分解功能连接性(FC)

     (A)连边时间序列矩阵(顶部)。行对应于连边,列对应于时间点。每个帧的全局幅度由所有连边的所有共波动值的均方根(RMS)定义(中部)。RMS 时间序列中的高幅度峰值对应于“事件”,可以通过将观察到的 RMS 值与打破区域间相关结构的零模型下获得的 RMS 值进行统计比较来检测(底部)。

    (B)静态 FC(功能连接性)在定义上恰好等于时间平均的共波动。它可以用一小部分事件帧很好地近似;低点产生的近似效果要差得多。这些近似是通过从选定的时间点获取共波动矩阵并对它们进行平均来生成的。

    (C)高幅度事件可以根据其空间相似性被划分为“状态”。簇质心对应于共波动矩阵。

   (D)矩阵可以投影到节点上,以获得观察到的共波动模式背后的“激活模式”。这些投影通常是通过对簇质心进行特征值分解来获得的。

       连边时间序列(eTS)具有其他有用的特性。根据构造,eTS 的时间平均值恰好是乘积-矩阵相关性。在整个大脑层面,这个过程不仅生成一个系数,而是生成一个系数向量(1 × N连边),该向量可以重新排列成一个 N节点 × N节点矩阵。这个矩阵就是静态功能连接性(FC);eTS 是 FC 的精确时间分解。请注意,原则上,eTS 可以使用窗口/核进行平滑,尽管这个过程可能会模糊细粒度的时间细节,而且平滑后的估计不再是静态 FC 的精确分解。

      从神经科学的角度来看,边时间序列(eTS)有一个显著的特点,即它们呈现出“突发性”('burstiness')。与现有的文献一致,长时间的相对静止状态会被短暂的高幅度共波动(cofluctuations)打破,而这些共波动并不与运动或生理因素有关。这些突发性事件在eTS矩阵中表现为垂直的条纹,对应于整个大脑的事件和均方根(RMS)时间序列的峰值。通过“过滤”帧来获取高/低幅度的功能连接(FC),我们可以更深入地了解这些事件的重要性。高幅度的FC更具模块化特性,并且与静态FC有更好的相关性,这表明这些事件能解释大脑在系统级别上的组织结构和耦合模式。      

      此外,这些事件也可以被聚类成大脑网络状态。最大的聚类主要由默认模式网络和突显/腹侧注意网络的共波动特征。当这种共波动模式投影到节点上时,它立即被识别为默认模式网络或第一主要梯度,或是感觉运动-联合轴,或是外在/内在或任务正/负的划分。第二大的聚类则主要由控制和背侧注意网络的相反共波动特征。这些状态通常占所有事件的约50%,并且在多个数据集中都有观察到。然而,对于剩下的事件的聚类结构,一致性较差,这暗示它们可能没有明确的聚类归属。

      什么因素是事件出现所必需的?解决这个问题的一种方法是通过计算模拟。最近的一项研究基于经验性结构连接性将振荡器相互耦合。当进行模拟时,该系统为每个节点生成相位时间序列。这些相位经过血流动力学卷积,生成表现出事件的血氧水平依赖性(BOLD)激活。有趣的是,事件期间表达的共波动模式与解剖模块对齐。当模块结构被降解时,事件计数下降,这表明解剖模块性可能对组织大脑活动成连贯的共波动至关重要。另一项研究实施了更详细的生物物理模型,并在事件和群体活动中的级联点火/传播之间建立了联系。   

     这些建模研究表明,内部状态或外部刺激的变化驱动的机制并不是产生eTS(边时间序列)中瞬时波动(包括事件)的必要条件。这种波动可以从基础动力学中自发地出现。同时,这些研究也排除了生理混杂因素和运动作为唯一的解释。简而言之,这意味着大脑中观察到的瞬时波动和事件可能是大脑固有动力学的自然结果,而不一定需要外界刺激或特定的生理状态来触发。这为我们理解大脑如何自我组织和调节提供了新的视角。

     另一方面,有几项研究使用自然刺激实验性地探讨了事件的起源。其中一项研究发现,在观看电影期间,RMS时间序列表现出强烈的被试间相关性,而另一项研究显示,场景变化一致地引发了事件。这些研究表明,事件的时机可能受到感官输入的调节。

     简而言之,有证据表明,事件不仅可以自发地发生,而且还可以作为对刺激的响应而发生。因此,事件起源的机械性描述尚有待阐明。一个可能的线索来自任务研究。在认知要求高的任务中,激活会“抑制”功能连接性(FC),减少活动的可变性,同时减弱FC的幅度。最近的一项研究观察到,在观看电影期间,事件可靠地出现在电影场景结束附近,模仿了过渡到休息状态的过程,该状态可能伴随着共波动幅度的增加。

eTS(边时间序列)也可能用于研究个体差异

      神经科学的目标之一是理解激活、形态和连接性的变化如何转化为行为、认知和人口统计特征的差异。在网络神经科学中,这通常意味着识别与行为共变的大脑网络元素。其中一些特征是状态依赖的,例如任务诱发的连接性。其他特征更稳定,类似于个体特质,并且对个体是独特的。

     事实上,许多研究都集中在基于网络的“指纹识别”上,即识别网络特征的程度,以便它们能够个性化。这通常涉及从一系列扫描中估算一组基于大脑的特征(例如,连接权重),在这些扫描中,每个参与者至少被扫描两次。预期是,这些特征使参与者“可识别”,换句话说,它们与自己的其他扫描更相似,而不是与其他参与者的扫描相似。

      例如,最早的发现之一是,与低幅度帧相比,高幅度帧似乎携带更多的特定于受试者的信息。也就是说,基于高幅度帧期间表达的共波动模式,可以可靠地区分不同的参与者。实际上,甚至有可能通过从一组选定的帧中重构功能连接性来增强指纹,这些帧不仅限于高幅度。相反,低幅度帧相对而言包含关于个体的较少信息,并且更可能与扫描仪内的运动相关。

      越来越多的研究利用eTS(边缘时间序列)来研究个体差异。第一项eTS研究分析了人类连接组计划(HCP)的数据,从行为/人口统计数据中提取了因子得分,然后计算了从高/低幅度帧重构的功能连接性(FC)的相关性。研究发现,高幅度帧平均而言显示出更强的相关性。尽管最近的研究表明,对于选定的行为测量集,中幅度帧(非事件)最有用于预测行为。

      其他研究已经使用eTS来描述中风后的大脑恢复,分类自闭症谱系障碍的个体,研究情景记忆,探究基底节与皮质的通信特性,研究时间变化的结构-功能耦合,将事件簇与内源性激素波动联系起来,以及区分任务状态。

      总体而言,eTS是一种无参数的方法,用于将FC分解为时间变化的贡献。eTS矩阵中的帧是网络,其权重对应于瞬时共波动的大小。因为平均eTS解析为静态FC,我们可以识别最能解释FC的帧。高幅度事件从其他事件中脱颖而出。证据表明,尽管事件仅占帧的一小部分,但它们携带有特定于受试者的信息。值得注意的是,事件并非全部故事。一些研究建议,中幅度和低幅度帧可能比从事件重构的FC更能预测认知能力。一种可能的解释是,事件促进了一种共波动模式,尽管这种模式是特有的,但在个体之间是共享的。通过排除事件,人们可以放大个体间的差异,并增强大脑与行为之间的关联。未来的工作将有助于澄清除“事件”之外的帧的其他作用。

eTS有其他一些奇特的属性
eTS中的二分划分

      其中一个更有趣的是与eTS中随时间变化的社区结构有关。直观地说,人们可能会想象社区的数量应该随时间而变化;使用其他时间变化功能连接性(tvFC)度量的研究已经报告了这种效应。然而,有趣的是,在任何给定的时间点t,eTS最多只能展示两个紧密相连的社区。在这些社区中,节点会根据其活动的符号被划分到其中一个社区中(见图4A-C)。更直观地说,当我们计算eTS  

图片

时,该值在zx(t)和zy(t)的符号相同时为正;当它们的符号不同时,共波动则为负。

图片

图4:连边时间序列的其他属性

      (A) 大脑活动可以表示为一个长度为N的列向量,其中N等于网络节点的数量。共波动矩阵是整个大脑活动向量与其转置的乘积。然而,相同的活动模式取反(乘以-1)将产生相同的矩阵(面板D)。

     (B) 按活动向量的幅度和符号重新排序的共波动矩阵,从负到正。具有相同符号的活动的节点将形成一个紧密的模块,因为它们彼此的乘积总是>0。

     (C) 因为只有两种可能的符号,所以只有两种可能的社区,从而导致二分划分。

     (E) 一个静态功能连接(FC)矩阵的示例。

     (F) 通过取每个节点在给定时刻的活动的符号,可以更直接地获得共波动矩阵的正/负组成部分的二分划分。正和负元素与二分划分的组成部分完全对应。不出所料,随着活动的波动,二分划分会随时间而改变(F)。二分划分可用于构建一个时间平均的共指派矩阵。这个矩阵的元素与静态FC高度相关。

    (H) 与时间变化功能连接(tvFC)的滑动窗口估计相比,连边时间序列显示出更快的自相关。

     (I) 这对“状态检测”分析有影响。从滑动窗口tvFC派生的网络状态更“粘性”,并且倾向于在多个帧中保持相同的状态。在连边时间序列的情况下,有更多的跨状态转换。     

      这一观察对于理解大脑系统级组织有重要意义(见图4E-G)。尽管在名称和地形方面存在分歧[36.],但有共识认为,在更大的尺度上,存在多于两个的大脑系统/网络。eTS(边时间序列)分析显示,这些网络永远不能同时表达。相反,这些系统反映了时间变化的双分割(bipartitions)的时间叠加,这些双分割本身反映了瞬时反相关的节点群。此外,去除BOLD(血氧水平依赖)信号幅度并聚合双分割结构的瞬时快照几乎完全重构了基于经典相关性的FC(功能连接性)。并且,将信号简化为二进制可以促进在神经时间序列上应用机器学习方法。

通往相同共波动矩阵的两条路径

      另一个有趣且相关的观察涉及共波动矩阵的对称性。一般来说,如果只观察一个共波动矩阵,就不可能明确地确定产生它的活动模式。这是因为

图片

(图4D)。换句话说,翻转区域时间序列的符号会产生相同的连边时间序列(eTS)。这对我们理解FC和活动之间的关系有意义。具体来说,它暗示了两种模式之间的脱节,即活动的符号对耦合强度的披露很少。

eTS(边时间序列)表现出快速的自相关性

       共波动模式随时间的变化有多快?这个问题可以通过计算自相关函数来解决。与时间变化功能连接(tvFC)的滑动窗口估计相比,eTS很快就衰减到基线水平,通常在几帧内(图4H)。这对于基于状态的tvFC分析很重要,在这里,帧被聚类为大致重复的“状态”。然后,人们可以计算从大脑在时间t的当前状态转变到t+1的新状态的概率。不出所料,滑动窗口tvFC的转换矩阵表现出明显的对角结构。相比之下,从eTS估计出的大脑状态表现出更明显的非对角转换——换句话说,更有可能转变到一个新状态。

系统级eTS(边时间序列)

       eTS可以为选定的子集进行计算,而不是表示所有可能的连边。例如,在最近的一篇论文中,作者提取了系统内连边的eTS,并比较了不同大脑系统中事件的时序。有趣的是,事件时序在不同系统之间是可变的,并沿着感觉运动-联合轴进行了结构化。这种方法促进了“系统触发的共波动模式”的构建——基于其事件时序为每个系统建立的共波动的特征模式。此外,从这些模式中,我们还可以根据该系统引发的最大共波动幅度。通过将每个连边分配给一个社区来估计连边社区。

使用eTS优化大脑-行为关联

      尽管尚未充分探究,但使用eTS最有用的策略可能是将其用作过滤器。因为eTS是静态FC的分解,这意味着我们可以有选择地重新组合帧以生成FC的近似值。一种可能性是按幅度对帧进行分层,并为每个水平重构FC,然后将重构与静态FC进行比较。原则上,我们还有其他启发式方法可以聚合帧和其他目标函数,我们可以寻求优化。一种途径是可以重构FC以最大化可识别性、大脑-行为关联,或者将大脑分配给对照或临床组的准确性。

处理流程对eTS和事件的影响

     众所周知,处理流程的变化会影响功能连接(FC)。其中最具争议的决策之一是是否要对体素/灰度坐标时间序列进行全局灰质信号(global signal regression, GSR)的正交化。这个过程有助于减少运动等干扰变量的影响,但也可能因为全局信号与生理测量(如唤醒度)相关而去除有意义的信号。那么进行GSR对eTS和事件有什么影响呢?这个问题在最近的一项研究中部分得到了解答。作者检测到的事件与是否进行GSR无关。然而,在事件期间表达的共波动模式对这一决策是敏感的。在进行GSR的情况下,“事件状态”总是由反相关的大脑区域组合而成——换句话说,每个状态都是由一组节点组成的,这些节点的活动瞬时偏离了它们的时间平均值,而另一组节点的活动则低于它们的平均值。在没有GSR的情况下,这些相同的组也出现了。然而,它们并没有作为反相关的对出现,而是独立出现。

将连边为中心的方法与更广泛的文献联系起来

       在过去的十年里,有几项研究提出了与前文描述密切相关的方法或发现。例如,使用eTS(连边时间序列)做出的几项观察在文献中有直接的先例。例如,十年前的一项研究报告了体素级活动的同步突发,最终导致了提出用点过程('活跃'和'非活跃'状态)来描述fMRI数据的观点。其他研究不仅使用fMRI数据,还使用其他成像方式报告了类似的发现,包括神经元放电、可能与唤醒有关的高密度电生理记录,以及用于划定行为状态的颅内记录。

      在方法学上,时间导数的乘法(MTD)、共激活模式(CAPs)和主导特征向量动力学分析(LEiDA)与eTS有关。MTD计算区域时间序列的差异——即xi(t + 1) − xi(t),其中xi(t)是时间t时区域i的活动——然后计算它们的逐元素乘积。CAPs识别种子区域活动时间序列中的高幅度峰值,提取这些峰值期间的全脑图,并随后将它们聚类成一小组“状态”。这些高幅度激活图可以通过计算它们的外积转化为共波动矩阵。LEiDA与eTS非常相似,但是它作用于相位时间序列,而不是z标准化活动,并计算两个传感器或区域之间的瞬时相位差异,而不是它们的逐元素乘积。此外,这些框架都没有明确地指出瞬时共波动和静态FC之间的联系。值得注意的是,还有其他情况,其中eTS与连边时间序列框架完全相同地描述。由于术语的不同(eTS被称为“瞬时连接性”),最近的一份报告被忽视了。在另一种情况下,该工作以海报形式呈现,但未发表。

      eTS可以用于检测重叠社区——要么直接将聚类算法应用于时间序列本身,要么应用于eFC矩阵。尽管使用其他方法也可以检测到重叠社区,但这些方法倾向于生成分区,尽管它们允许重叠,但大多数节点仍然明确地归属于单一社区。相比之下,连边社区普遍存在重叠,即重叠是规则而非例外。也就是说,大多数(如果不是全部)节点都参与多个社区。在没有基准真值的情况下,判断不同社区检测技术之间的优劣是具有挑战性的,也很难实现,这进一步激发了探索从多种方法派生的非重叠和重叠社区,以探查它们的交集以及它们的差异。

     以节点为中心的网络和图论度量的先前研究已经识别出高参与度的中心——即将多个大脑系统连接在一起的区域——位于联合皮层和控制网络中。第一篇以连边为中心的论文分析了eFC数据,并将连边聚类到社区中。基于其连边社区的多样性,为每个大脑区域计算了一个熵度量。与先前的文献相反,熵度量的最高水平集中在感觉运动和注意网络中。在这一分析的后续研究中,作者将连边社区视为一组节点特征,并为每一对区域计算了一个特征相似性度量。有趣的是,尽管感觉运动/注意网络展示了最高水平的多样性,但这些系统内的节点具有高度相似的连边社区特征。另一方面,控制网络的节点高度不相似。这些观察结果表明,联合皮层观察到的多功能性可能反映了不同区域之间连边社区特征的异质性,而不是单个区域与不同大脑系统之间的连接。

      有趣的是,重叠水平最高的节点——即那些连边均匀分布在检测到的社区中的节点——包括感觉运动和注意网络中的区域。相比之下,先前的研究报告称,重叠水平最高的涉及联合皮层和控制网络,这与这些系统支持一系列大脑/认知功能的观点是一致的。通过考虑节点的连边社区分配的系统级变异性,可以从连边社区中恢复联合皮层的多功能性。尽管感觉运动/注意网络中的节点个体上表现出高度的重叠,但它们的连边社区特征是同质的。相比之下,控制网络中的区域表现出较低的重叠,但具有高度不同的连边社区特征。总体而言,这些观察结果表明,联合皮层(控制和默认模式网络)可能不是从高度重叠中继承其多功能性,而是从高度内部不同性中继承。

结论和未来方向

     接下来,以连边为中心的网络将走向何方?以连边为中心的网络试图访问神经时间序列数据的高阶特性。其他方法也试图做同样的事。

     超图(Hypergraphs)允许任意数量的节点通过单个“超边”(hyperedge)进行交互,并可以通过一个关联矩阵H紧凑地表示,其中H的行和列分别对应于超边和节点。对于给定的超边(行),相关联的节点被赋予1的值,而所有其他节点被赋予0的值。通过计算HTH,这些高阶交互可以投影到节点上。这个矩阵的元素对应于节点对由相同超边连接的次数。有趣的是,前面描述的双分区(bipartitions)可以通过超图的视角重新解释。每个双分区定义了两个超边(每个社区一个),并且共指派矩阵(图4F,G)等同于前文中描述的投影。

      两个替代框架起源于信息论和拓扑学。互信息(Mutual Information),用于量化变量对之间共享信息的量,可以扩展以包括多个变量。同样,代数拓扑学是一个数学领域,关注于团(完全连接的子图)的形成以及由相互作用的团形成的结构。这两种方法现在经常应用于神经科学数据集。

     尽管过去几年来研究高阶交互的方法越来越受到关注,但还存在几个局限性。其中最大的担忧之一是将eTS解释为“动态”的。这个担忧并不新鲜。以前的研究报告称,BOLD时间序列的静态生成模型表现出与实验记录一致的时变特性。这一模型证明了思维并非tvFC(时间变化功能连接性)的必要条件,从而对tvFC反映持续思维的假设提出了质疑。

     最近,关于eTS也有类似的担忧被提出。其中一篇报告显示,在具有固定协方差结构的静态模型下,高幅度事件自然地表现出来,而另一篇则质疑观察到的网络“状态”是否反映了统计波动。对以连边为中心的方法的数学起源进行更深入的探究进一步显示,以连边为中心的网络的许多时变属性可以从静态FC矩阵的特性中解析地推导出来(或至少近似地推导出来)。这不仅包括eTS中的高幅度事件,还包括eFC矩阵的某些属性,包括连边群集的相似性。他们还为一些最早的以连边为中心的分析中的一个观察提供了数学基础——即从eTS推导出的全局共波动幅度与基于节点时间序列进行的类似测量紧密相关,强调未来的研究需要明确确定哪些eTS的特性不能直接从静态FC或节点级属性预期。

      这些论文是至关重要的,迫使该领域去面对生成外在复杂现象所需的最小假设集合。在这种情况下,大脑的相关结构和缓慢、串行相关的时间序列产生了逼真的时间序列。然而,这些模型仅证明了这些约束的充分性;它们在解释特定属性方面的成功并不意味着大脑实现了该模型,或者它解释了所有属性。这些模型的另一个局限性是它们将FC视为生成过程的基础,而不是其最终产物。另一种观点是,相关性并没有因果地塑造大脑活动。相反,FC是描述解剖学受限动态过程历史的摘要统计量。也就是说,大脑的结构连接性塑造了通信级联,并在一对大脑区域的活动中诱导相关性。从这个角度看,FC是动态的结果,而不是因果组成部分。

      尽管如此,以连边为中心的分析面临的一个关键挑战是证明时变波动不仅仅是统计伪像。几项最近的研究有助于消除这种担忧。首先,一项研究显示,tvFC(时间变化功能连接性)能够预测自发行为,超出了大脑活动的解释范围,这暗示了tvFC具有独特的解释作用。其次,对观看电影数据的分析发现了强烈的受试者间tvFC。如果tvFC代表随机波动,我们会期望受试者间的相关性最小。另一方面,连边之间的受试者间相关性可能是由节点激活偶然驱动的,尽管减少观看电影数据中基于激活的混杂因素的回归策略尚未明确。

      由于其增加的维度,存储和操作eTS和eFC所需的内存量远大于节点时间序列和静态FC。为了证明这种数量级增加的计算复杂性是合理的,使用连边时间序列的研究应证明所报告的效应不能仅仅从节点时间序列中轻易获得。一个明确的例子来自一项非常近期的研究,其中作者使用线性模型预测使用连边时间序列的注意力自发波动。重要的是,他们还显示,基于节点级波动单独无法轻易识别出高度预测性的连边,这表明eTS独特地预测了注意力波动。

      迄今为止,几乎每一项以连边为中心的研究都分析了人类的fMRI数据。将这些工具扩展到模型生物是重要的下一步。与人类参与者不同,侵入性实验在人类参与者中会引发伦理问题,光遗传学和化学遗传学的扰动可以用于直接评估单个节点和连边的作用]。类似的技术可以用于澄清区域/种群对事件的启动/终止的贡献,并因果地探测连边社区结构。

      与此相关,未来的工作应专注于将以连边为中心的分析扩展到其他成像方式。现在已经有可能在行为模型生物中获得(接近)全脑的单细胞水平的记录,这允许直接比较从eTS(连边时间序列)派生出的指标与正在进行的行为进行分析。此外,双成像技术的发展使得可以同时收集BOLD和钙荧光图像,以比较连边级别的指标。

      此外,未来的研究应专注于将以连边为中心的分析应用于任务诱发的记录。大多数现有的研究都集中在无任务的范式上——即静息状态和观看电影。任务fMRI研究中是否有事件?如果有,我们能否区分哪些事件是由刺激驱动的,与哪些可能是自发发生的?任务研究中观察到的共波动模式与从无任务设计中估计的有多相似?任务难度是否与事件和eFC(边缘功能连接性)的属性相关——例如,全局共波动幅度和连边社区的重叠?

     大脑网络是多模态和多尺度的。理解其在健康和疾病中的组织和功能是一个持续的挑战。尽管现有的用于研究网络的框架已经促成了基础性的发现,但仍有许多问题尚未解答(参见未解决的问题)。解决这些问题可能需要改变观点和开发新的建模框架。这里回顾的以连边为中心的模型代表了这样一个框架。它不应被视为一组超越现有用于研究激活和节点为中心网络的方法的工具,而应被视为一种补充方法,可能提供使用现有方法不易获得的独特见解。

最后我们提出一些未解决的问题,大家共同思考:

     1.我们如何区分随机的“噪声”和连边时间序列以及其他时间变化连接性的真正动态特性?

     2.事件的功能角色是什么?它们代表不同的大脑状态,还是仅仅是一个共同分布的高幅度尾部?

    3.大多数以连边为中心的研究都集中在人类静息态fMRI上。如果将相同的方法应用于非人类主体和其他记录方式,我们会观察到相似的现象吗?

     4.事件和连边社区如何依赖于临床状态或任务条件/状态?

    5.连边社区归属的认知或行为相关性是什么,以及这种归属可能如何受到不同认知状态或行为范式的调节?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值