通过全脑建模了解时空跨度下的大脑状态

为了在复杂的环境中生存,人类大脑依赖于根据内在和外在信号灵活地适应正在进行的行为的能力。这种能力已经与特定的全脑活动模式相关联,其相对稳定性(顺序)允许保持一致的功能,同时又有足够的内在不稳定性以实现最佳的适应性。大脑活动在时空中的秩序和混乱之间的自发、突现的平衡支撑着不同的大脑状态。例如,抑郁症的特征是过度刚性、高度有序的状态,而迷幻类药物可能会导致更多的混乱,有时过于灵活的状态。系统、计算和理论神经科学的最新发展已经开始探索如何表征这种复杂动态在空间和时间上的特性。在这里,我们回顾了从神经影像学和全脑建模中获得的最新见解,这些见解激发了我们使用来自动力系统理论的机械原理来研究和表征大脑状态。我们展示了不同的健康和改变的大脑状态如何与特征性的时空动态相关联,这反过来可能会随着时间的推移为疾病中重新平衡大脑状态提供新的治疗启示。本文发表在Philosophical Transactions A杂志。(可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群)。

引言

      大脑是一个极为复杂的系统,能够通过时空动态产生丰富多样的行为。大脑由大约1000亿个神经元组成,它们之间有大约100万亿个突触,这种密集的解剖和功能交互网络被称为人类的连接组。最近在转录组学方面的进展进一步展示了人类大脑中神经元解剖结构的异质性。神经元交互的动态是在结构支架上进一步被众多神经递质系统调节的。因此,不足为奇的是,许多新方法,包括动力系统理论、信息理论、湍流和统计力学,都需要用来理解大脑复杂的时空动态。

      确实,这意味着从仅仅从个体神经元或大脑区域的角度来看大脑及其功能,转变为从系统层面来看待多个交互单元的交互。从这个概念性的飞跃中涌现出的领域之一是网络神经科学,它专注于从它们的属性和对产生复杂行为的重要性方面描述大规模的结构和功能网络(图1a)。

图片

图1. 复杂系统中的大脑 。

(a) 观点的转变,将大脑的功能和结构视为一个综合网络的关系,而不仅仅是对个别感兴趣区域的局部描述。

(b) 在许多生物系统中,如大脑,刺激与测量输出之间的交互主要是非线性的。

(c) 大脑内在过程中时空模式的自发形成表明了自组织的特征。

(d) 在许多空间和时间尺度上检测到复杂的活动模式,从神经元到整个大脑,从毫秒到分钟。

(e) 处于不稳定边缘的系统可能具有临界动态的特征。

(f) 在介观尺度上组成部分的交互作用导致了在宏观尺度上出现的大脑活动模式,这不能仅仅通过单独的个体部分来解释。

      通常,动力系统的状态可以通过它对外部扰动的响应方式来表征。例如,在清醒的大脑状态下,外部经颅磁刺激(TMS)会引发整个皮层上的非线性响应。这与分离和整合的正确平衡有关,它允许信号在皮层中传播。这与深度睡眠状态形成对比,在该状态下,TMS扰动导致高度局部化的兴奋。随着扰动强度的进一步增加,局部响应增加,但保持了其典型和均匀的扩散,不同于清醒状态的非线性响应(图1b)。通过电脑脑电图(EEG)记录的复杂时空动态的不同响应可以成功区分植物状态、最低意识状态或麻醉状态。

      在正确的平衡下,复杂系统可以进一步展示来自部分非线性交互的时空自组织属性。有趣的是,这种情况是分布式发生的,没有中心化的控制指示出现的顺序(图1c)。在大脑中,时空组织可以从非常微观(神经元)、介观(神经元回路)到宏观(皮层区域的整体)的尺度进展来考虑。这种嵌套层次具有尺度不变性的特征,其中观察到组织的相似特征跨越拓扑、空间和时间以及典型的计算模式(图1d)。重要的是,这种组织被假设发生在临界性的边缘——一个动力学范围,其中可能产生长程空间和时间相关性。处于临界边缘的系统的特征之一是幂律缩放(编者注:幂律,又称幂定律、幂法则,英文:Power law,表述两个量之间的一种函数关系,描述其中一个量的相对变化导致另一个量相对变化的关系,而与这些量的初始大小无关)。它们已经在空间维度上观察到——从单个神经元到来自功能磁共振成像(fMRI)的整个大脑网络,以及在时间维度上(既在EEG和脑磁图(MEG)记录的快速尺度,也在fMRI数据的慢速尺度)。进一步了解接近临界状态时系统所具有的属性是很重要的,因为在这个范围内,动态范围、容量和信息传输是最优化的。在这个范围内,时空的亚稳定性(动态灵活性的概念)被假设为最大(图1e)。

      此外,展现自组织属性的复杂系统会产生突现现象,自然界中有各种例子——如惊鸟的群体、蜜蜂的群体或蚂蚁群。系统的这种集体行为来自大量个体元素的交互,只能通过部分之间的交互规则来完整解释,而不能仅仅通过单独观察个体元素来解释——该行为被认为是计算不可简化的。在大脑中,这些特征代表了不能简单归结于基础神经生理学的高阶认知。具体来说,在静息状态的大脑活动中,一种没有任何外部任务的条件下,空间同步系统,被称为静息状态网络(RSNs),被假设为源自基础神经活动的突现现象(图1f)。这些突现属性(弱突现的例子)通过与环境交互创建了它们自己的规则,并具有成为决定基础部分活动的最主要属性的潜力。

2.来自神经影像学的见解

      对大规模大脑时空模式的理解很大程度上来自于使用功能磁共振成像(fMRI)研究大脑,它提供了高空间分辨率的全脑覆盖,但以时间分辨率为代价。分析大规模时空活动模式的常用方法是采用基于网络的视角,其中静态功能连接性(FC)被估计为基于图谱的区域对的时间序列之间的相似性。尽管从区域激活转向基于网络的方法的初步成功,但使用纯静态方法分析不同大脑状态的足够主体特异性仍然具有挑战性。由于大脑是随时间演变的动态过程,静态FC可能会错过大脑活动的重要时变特征。实际上,这已经被关注个体功能连接随时间变化的研究所暗示。

     迄今为止,已经开发了许多方法来表征随时间变化的fMRI空间组织。通常,会利用时变活动的各种特征,但主要是集中在信号变异性的量化、空间子状态的表示和时间图的拓扑结构上。

     尽管基于特定方法的方法论考虑可能会有所不同,但它们对功能连接动力学(FCD)的看法相似,认为它是由时空大脑子状态的一系列组合而产生的。一旦实现了这种描述,就有可能在时间上描述空间子状态的变化,从而通过它们的分数占用率(即概率)、驻留时间(即持续时间)和转换概率等其他总结度量来创建更准确的大脑参与的动态过程的描述(图2a)。

图片

图2. 功能MRI的动态方法

(a) 基于基质的fMRI活动表示。fMRI信号被划分为多个区域;量化它们的时间关系并聚类以获得一组随时间动态演变的空间模式。基于基质的度量方法允许我们总结空间模式的动态。

(b) 连接组谐波分解(CHD)是一种考虑从结构连接组的拉普拉斯特征模式中表达的空间模式的方法。所谓的连接组谐波然后投影到时间序列上,允许分析这些连接组谐波随时间的变化。

     虽然FCD(功能连接动力学)试图仅从大脑活动记录中表示时空模式,但一个活跃的研究领域已经关注了来自扩散加权成像的白质纤维网络,它使得不同大脑状态下的大脑活动的出现成为可能。结构如何塑造功能尚不清楚;然而,通常认为大脑结构限制了动态出现的空间。这个想法可以用亚里士多德的引言来表述:“水的形状由其容器决定”。结构网络中的扩散谐波模式可以从图拉普拉斯算子的特征向量中解析确定。具体来说,连接组谐波框架已经显示,结合结构连接组中最慢的扩散模式中的一些(从具有最小特征值的拉普拉斯特征向量中捕获)可以准确描述已知的RSNs。顺便说一下,这些谐波模式可以被视为大脑活动的构建块,以表示精神障碍中的大脑活动的复杂时空模式,以及在不同的意识状态中(图2b)。

3.来自全脑建模的见解

      虽然FCD(功能连接动力学)提供了关于时空大脑活动的重要见解,但理解复杂动态如何从结构性大脑拓扑中出现,至关重要的是要超越仅仅比较实证结果的方法。因此,有必要构建计算模型,使我们能够通过模拟从结构连接组中近似出现的大脑动态,从而为不同大脑状态下的时空大脑活动的结构、功能和动态属性提供基本的观察。

      全脑计算模型将相互作用的大脑区域的神经活动描述为一组代表所需神经生理学或动态特征的耦合微分方程。为了加强模型的生物合理性,结构连接组被用来反映个体大脑区域之间连接的强度。大脑区域模型的选择通常取决于在模型复杂性和现实性之间取得微妙的平衡。在特定情况下,可以通过神经质量活动的平均场近似或耦合振荡器的现象学模型来解决大脑动态的出现。已经提出了几种不同的情景,其中基于电导和兴奋-抑制神经元的模型描述了大脑生理学的方面,而现象学模型描述了同步机制,例如Kuramoto和Hopf模型(图3a)。

图片

图3. 来自全脑建模的见解 

(a) 全脑模型用随机非线性动力学来描述每个区域中嵌入的时空动态,这些区域通过由连接组表示的解剖结构与其他区域交互。描述这些模型的重要步骤是用实证FC特征进行验证。

(b) 在展示小世界属性、感兴趣区域之间的弱耦合交互以及处于不稳定边缘的局部动态的结构连接组的模型中,大脑动态的空间和时间组织得以保留。

(c) 丰富的自发大脑动态的亚稳定状态可以在空间和时间顺序连续体的极端情况之间感知到。

     时空活动日益丰富的重要方面之一是其底层的结构连接性。研究显示,当模块化和效率达到平衡时,实证数据和模拟数据之间的最佳匹配就会出现,这与结构连接组的拓扑属性直接相关。重要的是,当通过损伤底层连接性来破坏这种拓扑时,许多出现的动态的重要属性会丧失。此外,当在一系列网络架构中模拟动态时,从规则的格子拓扑到随机网络组织,最佳工作点出现在中间的小世界区域,显示出高模块化和高效率。

      推动时空特征出现的另一个重要方面是神经元群体之间的耦合强度。在最佳的弱耦合点上,神经元群体具有相互影响的能力,从而产生接近RSNs和静态FC的集体活动模式。相反,如果耦合过强,神经元群体的完全同步会导致功能特异性的丧失。另一方面,在耦合很小的情况下,活动受局部神经元群体的控制,使得出现的空间模式变得无结构。此外,虽然它们似乎影响RSNs的时间和频谱属性而非它们的完整性,但神经元群体之间的信号传输所产生的延迟也被证明是相关的。

      FC随时间演变,因此,考虑产生这种时空波动的机制是相关的。换句话说,应用的全脑模型应进一步阐明超越静态FC或RSNs出现的FCD特征。最近,已经证明,在大脑区域之间的最佳耦合水平下,仅结构化噪声(与SC结合)就可以解释静态FC,但不能解释非平稳动态。这引出了一个问题:“是什么额外的原则导致了这种时空动态?一种可能性是将其归因于嵌入在每个区域中的随机非线性动力学。因此,时空动态是由处于不稳定边的区域非线性模型的噪声诱导波动产生的。因此,该模型具有临界系统的特征,例如可能的大脑子状态的增加和长期时间相关性。实际上,已经证明,这些特征是由具有波动幅度的耦合振荡单元产生的,由超临界Hopf分叉表示(编者注:Hopf分岔是一种重要的非线性动力学现象,通常发生在一类带有非线性耦合项的微分方程系统中。在这类系统中,当某个参数变化时,系统的稳定性会发生变化,从而导致系统的行为出现了显著的变化),其中全脑网络模型能够重现包括FCD(功能连接动力学)和概率性亚稳定子状态在内的时空度量。

4.精神药物和抑郁症大脑状态的时空

      随着全脑非侵入性神经影像技术的发展,已经认识到不同的大脑状态由不断变化的时空模式组成。虽然人类大脑的最佳功能可以在普通清醒状态的静息状态条件下被识别,但在其他大脑状态中,如精神药物诱导状态或临床确定的抑郁状态中,它会发生改变。重要的假设是:精神药物诱导状态和抑郁状态之间的关系可以从理论角度结合神经影像数据的时空分析和全脑网络模型的见解来处理。

5.理论描述

      在熵脑假说中,认为复杂大脑活动的熵水平(广义上理解为神经信号多样性)指标了大脑状态的信息内容丰富程度,上下边界标志着普通清醒状态的终止。在不稳定区域的位置上,观察到普通清醒状态具有足够的稳定性和灵活性。进入精神药物诱导状态时,熵增加导致大脑动态更易受影响和更易塑造。人们认为自发的大脑动态会更接近临界点,大脑参与的可能子状态的范围会扩大。相反,在抑郁状态下,这种动态特征上不灵活,反复思考和自我批评的思考期导致熵减小。在这方面,灵活从事发散性思维的能力变得受损。一种可能性是大脑动态变得不太稳定,例如默认模式网络(DMN)和额顶网络(FPN)开始控制大多数认知。

      精神药物诱导和抑郁大脑状态的进一步描述是根据大规模功能网络和时空动态的REBUS(RElaxed Beliefs Under pSychedelics,精神药物下的放松信念)模型。从这个角度来看,精神药物正在放松高级先验或信念的精确度,从而使它们对自下而上的信息输入更为敏感,主要通过边缘系统,否则这些信息将被省略,并可能修订和培养异常的先验。这些高级先验被编码在神经层次的自发活动中,特别是在高级关联区域以及DMN中,作为约束下级内容的压缩或总结模型。通过放松/解压这些先验,未被听到或被压制的信息可以自由地穿越神经层次并在更高级别被注意到。REBUS原则暗示了混乱状态的大脑,其中信息处理的内在层次主要在较高级别被破坏,例如由FPN和DMN表示。这导致自下而上的信息流与层次结构的较高级别处于同一立场。从这个意义上说,不再有任何“中央控制”,如术语所暗示的那样,导致功能层次结构的丧失,大脑熵的增加以及自下而上的信息流的有效连接性的增强

6.实证发现

(a) 精神药物诱导的大脑状态 

      在过去的十年中,已经进行了几项神经影像学研究,探讨了不同物质下精神药物体验的神经相关性。迄今为止,研究已经探讨了健康人群和抑郁人群在psilocybin(

赛洛西宾)影响下的大脑活动,LSD,ayahuasca和DMT。这些数据为研究精神药物体验期间时空维度上自发大脑活动的变化提供了独特的机会。

      在空间维度上,已经证明,fMRI活动的功能连接(FC)在LSD状态下扩展了可能的大脑模式的范围,如连接组谐波所描述的那样(图4c)。类似地,在赛洛西宾的影响下观察到了动态连接子状态的增强范围。此外,另一项使用代数拓扑学研究赛洛西宾效应的研究显示,低稳定性同调结构的数量增加,以及独特和稳定的同调结构的出现。

图4. 精神药物诱导状态的时空维度。神经影像学研究展示了在精神药物影响下的各种时空动态特征。

(a) LSD增加了动态功能密度,该密度由感兴趣区域与大脑其余部分之间的平均静态功能连接度定义,特别是在与前顶叶、默认模式和突显网络相关的功能系统中。

(b) LSD诱导状态下,大脑子状态的范围扩大,如连接组谐波所描述。

(c) 在PSIL、氯胺酮(KET)和LSD诱导状态下,时间复杂度(由LZ-复杂度定义)增加。(d) 在赛洛西宾影响下,时空动态变化,如LEiDA所描述,前顶叶网络访问频率降低。

     从功能系统的角度来看,研究发现赛洛西宾会降低内侧前额叶皮质(mPFC)和后扣带皮质之间的功能连接,以及前扣带皮质和mPFC的功能活动。此外,除了较低的认知网络外,大多数静息状态网络(RSNs)的网络间连接性都有所增加。同样地,LSD增加了与DMN、突显网络和额顶注意网络以及丘脑匹配的更高的关联网络中的FC密度,以及上述网络与其较低认知对应物之间的网络连接性(图4a)。这得到了DMN和其他RSN内部网络连接性的减少的补充。使用图论的测量方法,已经发现LSD增加了全局整合,而ayahuasca则被发现增加了度分布的Shannon熵。总的来说,这些结果指向了内部网络的解体与增加的网络间的凝聚力。

       在时间维度上,已经证明LSD、赛洛西宾和氯胺酮诱导状态下的信号复杂度有所增加(图4b),而在LSD状态下,这种增加在闭眼条件下最为明显。此外,通过连接组谐波分解描述的各种大脑子状态的共激活中观察到了时间相关性的变化,这表明了一种非平凡的空间分组。有趣的是,EEG实验显示,ayahuasca减少了α频带(8-13 Hz)的集体振荡,并增加了γ功率(30-100 Hz)的局部化。同样,发现DMT减少了α和β(13-30 Hz)带振荡,并增加了信号多样性[80]。最后,在LSD和赛洛西宾诱导状态下,MEG信号功率在整个频率谱上都有所降低。由于EEG/MEG检测到的振荡是由大型神经元群体的同步活动产生的,这些研究表明,精神药物体验与长程同步的抑制有关,从而导致信号多样性的增加,进而导致大脑子状态的范围扩大。

(b) 抑郁状态

      近期非侵入性神经影像学的发展开始为不同的大脑疾病描绘出系统级的大脑功能视角。在重性抑郁症(MDD)中,异常的功能网络交互已经与负责认知控制和与外界交互的控制网络、从事内部心理过程和自省的默认模式网络(DMN),以及评估相关认知和生物事件价值的突显网络相关联。实际上,已经提出了一个描述这三个功能网络之间交互的模型,称为三重网络模型,以解释几种主要大脑疾病中的情感和认知功能障碍。

      最近的一项研究显示,容易复发的MDD患者被发现在招募和持续一个由额顶、默认模式、突显和纹状体区域组成的网络时表现出受损,同时与对照组相比,他们在全局活跃网络模式中花费更多时间(图5a)。前者的网络被认为对于在内向和外向注意力之间切换很重要。值得注意的是,当患者和对照组都通过回忆悲伤的过去事件而被诱导进入悲伤的情绪时,两组都表现出全局同步模式的占用增加,这表明情绪调节功能网络动态。这些结果与DMN区域内网络连接性增加的报告一致,而DMN的前额和颞区之间更持久的静息状态FC表明DMN的优势更强(图5b)。在系统级的切换能力方面,已经观察到DMN的mPFC和前岛之间的变异性增加,以及DMN和FPN之间的变异性减少,这表明对情感信息的增强敏感性导致了沉思状态。总的来说,与健康参与者相比,MDD患者表现出更明显的同步和时间稳定性,但是需要进一步的研究来探讨抑郁状态下的FCD(功能连接动态)。

图5. 抑郁状态下的时空动态。神经影像学研究展示了重性抑郁症中各种时空动态的方面。

(a) 时空动态变化,如主导特征向量动态分析所描述。一个由额顶、默认模式、突显和纹状体区域组成的大脑网络在容易复发的MDD患者中访问次数较少,持续时间较短,而全球活跃网络在容易复发的MDD患者中相比健康对照组更为普遍。

(b) MDD患者的全球同步性和时间稳定性都有所增加。

(c) 未来展望

      基于神经影像学研究和整脑模型的洞察,大脑的时空动态可以被理解为通过一个由结构性连接组约束的弱耦合子状态的n维动态景观的时间轨迹。此外,它发生在不稳定性的边缘,使得大脑可以探索大量的子状态并保持长期的时间相关性。吸引子(子状态)的各个特征是根据它们的出现突出性(分数占用)、时间稳定性(驻留时间)和与其他子状态的接近性(转换概率)来描述的。通过健康大脑功能的神经影像学研究得到证实,这种景观将表现出足够的稳定性,以有意义地访问子状态,但同时也有足够的灵活性,以免陷入某个特定的子状态。在抑郁状态下,动态景观的变化将改变时间轨迹,某些吸引子会更多或更少地突出,暗示着在景观的某些部分存在异常的驻留。相反,迷幻状态将导致景观的“平坦化”,具有不太可预测的时间轨迹,暗示着通过基础景观的新路线。

     在实践中,进一步的进展将需要机械性的场景,其中可以将各种大脑状态建模为其时空描述。这可以通过为因果整脑模型提供额外的元数据来实现,反映大脑组织的异质特征,如神经递质密度、兴奋/抑制比率和时间处理层次。已经有一些有希望的研究显示了5HT-2A受体传输与整个大脑模型范例中的迷幻诱导状态之间的因果关系。另一个重要的方面将需要理解不同大脑状态如何在功能系统和神经递质神经生理学的层面上,以及在时空签名方面相互转换。例如,最近的工作已经展示了如何使用整个大脑的因果模型来预测在普通清醒和无梦睡眠状态之间转换的区域重要性。最后,将大脑状态的功能层次结构以及其空间和时间多尺度表示进一步详细地理论描述,将在探索状态之间转换的机械性干扰站点的空间方面具有相关性。例如,最近的工作已经展示了大脑的梯度结构,它是根据功能谐波来开发的——一种描述多维和多尺度模式的FC的方法(图6)。

图6. 活动景观。

通过fMRI描述不同大脑状态的大脑活动。这里有抑郁状态、静息状态和迷幻状态。活动景观,其中大脑的时空动态可以被理解为通过一个由结构性连接组约束的弱耦合子状态的n维地形的时间轨迹。预计在静息状态下会观察到最佳的健康功能,具有足够的稳定性和灵活性。在抑郁状态下,特定的吸引子变得突出,使得很难从它们附近逃脱。相反,迷幻诱导状态将导致一个“平坦”的景观,从而允许在景观内具有更多的灵活性。

7.结论

      本文中,我们为大脑作为一个复杂系统的观点提供了论证,强调了沿着空间和时间维度解释和理解大脑状态的基本机制的明确需求。重要的是,这得益于非侵入性成像和整脑建模,它们能够映射和模拟大脑丰富的时空动态。从实验上来说,最佳的清醒状态被假设为具有持续的稳定性,同时有利于灵活的重组。在这种情境下,迷幻药诱导的状态和抑郁状态将位于时空动态谱系的两端。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值