重性抑郁症患者海马与杏仁核亚区连接组层级的改变

海马和杏仁核这两个边缘系统结构对于理解重性抑郁障碍(MDD)的病因至关重要。然而,目前尚无高分辨率的研究描述这些结构亚区域在整个大脑网络(连接组)中的作用。对这些亚区域的连接组检查可以揭示在将其作为单一结构处理时可能被忽视的与疾病相关的模式。38名MDD患者和40名健康对照(HC)接受了使用7-Tesla MRI的解剖学和扩散成像。对整个大脑进行了分割,同时对海马和杏仁核的亚区域进行了分割,每个亚区域代表连接组中的一个节点。应用图论分析来检查边缘亚区域在大脑网络中的重要性,使用节点强度(节点连接的权重之和)、介数(穿过节点的最短路径数量)和聚类系数(节点邻居之间的相互连接程度和形成簇的情况)进行测量。与健康对照组相比,MDD患者表现出右侧海马角(CA) 3/4节点强度下降,表明与大脑其他部分的连接减少,以及右侧齿状回聚类系数下降,意味着它在簇中的嵌入程度较低。此外,在MDD组中,右侧杏仁核中央核(CeA)在簇中的嵌入程度越高,抑郁症状的严重程度越大。这些边缘亚区域在整个大脑连接组中的改变角色与诊断和抑郁程度相关,有助于我们理解边缘系统在MDD中的涉及情况,并可能阐明抑郁的潜在机制。本文发表在Translational Psychiatry杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,另思影承接白质高信号分割与分析业务,如感兴趣也可咨询)

引言

       重性抑郁障碍(MDD)是最普遍的健康问题之一,影响着美国约7%的成年人群,与显著的日常生活问题、残疾以及重大的社会和经济负担有关【1】。它是一种具有异质性临床表现的复杂疾病,涉及情感、认知和躯体症状。目前,其潜在的大脑病理仍然不甚清楚。过去十年累积的证据表明,像MDD这样的精神障碍的复杂病因并不局限于单一大脑区域的形态,而是表现为异常的大脑回路结构或功能【2,3,4,5,6】。

      许多神经影像学研究表明,特别是皮质-边缘系统(包括杏仁核、海马、前扣带皮层(ACC)和背外侧前额叶皮质(DLPFC))【7】内受损的连接在抑郁症的发病机制中起重要作用,这可能部分归因于其在情绪产生和调节过程中的重要性【8,9,10】。同时,海马和杏仁核这两个边缘下皮质结构在抑郁症中也是至关重要的【11,12,13】。根据动物和人类研究,杏仁核和海马都由解剖学上和功能上不同的亚区域组成【14,15,16,17,18】。海马由齿状回(DG)、海马角(CA)1-4和海马旁回组成【19】。杏仁核由多个核团组成,这些核团显示出独特的连接性和分子特征【16, 19, 20】。尸检和动物研究表明,抑郁症与海马CA亚区域的形态变化【21】以及中央和外侧杏仁核【22,23,24,25,26】有关。然而,由于过去的技术限制,如MRI空间分辨率和对小亚区域进行耗时的手动追踪,抑郁症中考虑杏仁核或海马的活体研究通常将它们作为单一结构进行分析。

      自动分割技术的出现使得对皮质下亚结构进行更可行和大幅改进的研究成为可能。已有数项研究关注MDD中海马亚区域的体积测量,包括手动和自动分割,其中一些报告了齿状回和CA(主要是CA3)体积减小【27,28,29,30】,而其他研究则发现MDD受试者与健康对照组(HC)之间没有显著差异【31,32,33】。一项先前的研究检查了MDD与HC之间海马亚区域和杏仁核体积差异,发现没有显著的组别差异,然而,杏仁核右侧外侧核(LA)、左侧皮质核(CoA)、左侧副基底核(ABA)和双侧皮质杏仁过渡区(CAT)的体积减小与MDD组内抑郁症状的严重程度相关【34】。然而,由于技术障碍,如扩散加权成像的相对低空间分辨率,难以在人类中识别这些核团,因此对杏仁核或海马亚区域在活体的结构连接性特征的研究具有挑战性。

      超高场7-Tesla(7T)MRI允许以更高的信噪比和对比度噪声比进行成像,从而提高空间分辨率【35】。我们最近对当前样本子集进行的超高分辨率7T扩散MRI研究发现,与健康对照组相比,MDD患者的海马左侧齿状回亚区域发出的纤维束数量(即使用概率纤维追踪重建的白质连接)减少【36】,右侧外侧核(LA)、基底核(BA)和中央(CeA)杏仁核展现出与大脑其他部分显著增加的连接性,而左侧内侧核(MeA)则显示出显著降低的连接性【37】。虽然这些研究增加了我们对MDD中这些小的边缘结构形态和结构连接性差异的理解,但它们并未提供关于它们在整个大脑网络中的角色或层级的关键信息。

       需要从网络角度研究整个大脑系统内区域的拓扑结构或层级。图论这一数学领域提供了一种灵活的方法来建模整个大脑的连接性,即所谓的连接组【38,39,40】。结构性大脑网络图由节点组成,代表解剖感兴趣区域(ROI),以及边,代表连接。局部节点特征(如节点强度、介数中心性和聚类系数)用于描绘网络中区域的层级,并识别对高效信息流动至关重要的枢纽。为了解释海马和杏仁核小亚区域在网络中的功能,我们应用了图论方法,据我们所知,尚无此类研究。

      在这里,我们利用超高场7T MRI检查了杏仁核和海马亚区域在整个大脑神经网络中的角色以及它们在MDD患者和HC中与抑郁症状相关的拓扑特征。利用7T MRI高空间分辨率的优势,实施了基于数据的图论结构连接组分析,以测试杏仁核和海马亚区域的局部网络层级是否区分了MDD和HC。我们检查了三种常见的局部中心性特征;(1)节点强度,它量化了节点在网络中的连接度,由连接到节点的连接权重之和定义。较高的节点强度表明对网络中其他节点有强大且直接的影响。在大脑网络中,具有高节点强度的节点被称为网络枢纽,被认为对于一般信息传输和系统级计算至关重要,可能成为网络级调控的良好治疗靶点【39】;(2)介数,量化节点在整个网络信息流中的涉及程度,并定义为穿过给定节点的最短路径数量。具有高介数中心性的节点更可能充当其他节点或甚至节点簇之间信息传输的中介【41】。具有更高介数中心性的节点将对网络有更多控制权,因为更多信息通过该节点;以及(3)聚类系数,通过计算连接到给定节点的两个节点也相互连接的概率来量化节点与其局部邻居的连接度(节点趋向于嵌入簇的倾向)。具有高聚类系数的节点表明其局部的凝聚性和高度趋向于嵌入或形成簇。较高的局部聚类系数还表明网络对节点移除或失效的局部鲁棒性【42】。因此,如果一个节点的邻居也高度相互连接,移除该节点将不会对其邻居之间的通信能力产生重大影响。我们假设MDD组将展示与HC相比异常的边缘亚区域结构网络层级。我们特别假设海马齿状回和CA 3亚区以及CeA和BA杏仁核将展现出与抑郁症状相关的大脑网络中的改变层级。

方法和材料参与者 

      研究参与者包括38名MDD患者(22名男性,16名女性,平均年龄:37.24 ± 11.45岁)和40名健康对照(HC)(26名男性,14名女性,平均年龄:37.15 ± 10.40岁),年龄和性别匹配(分别为p = 0.97和p = 0.52)。人口统计和临床变量见表1。所有受试者都在西奈山伊坎医学院的抑郁症和焦虑症发现和治疗中心(DAC)招募。所有参与者都接受了训练有素的评估者使用DSM-V轴障碍结构化临床访谈(SCID-V)进行评估,以确定任何当前或终生精神障碍【43】。由于使用G Power软件【44】进行的统计效力分析表明,我们需要至少78名参与者才能检测到中等到大的效应量(Cohen's d = 0.65,α = 0.05,1−β = 0.8),以进行两样本t检验。如果受试者有不稳定的医疗疾病(即需要治疗的重要活跃医疗状况)、神经疾病史、精神分裂症或其他精神病障碍史、神经发育/认知障碍、过去2年内的物质使用障碍、MRI禁忌症或扫描当天尿液毒理学阳性的被排除在外。HC受试者没有任何当前或终生精神障碍。所有参与者在数据收集前至少4周(氟西汀为8周)未服用抗抑郁药物或其他精神药物。MDD受试者的纳入标准包括将MDD作为其主要呈现问题,并处于当前主要抑郁发作中。在所有受试者中,抑郁症状严重程度由临床医生使用蒙哥马利-阿斯伯格抑郁评定量表(MADRS)【45】测量,主观抑郁症状由快速抑郁症状清单自评版(QIDS-SR)【46】评估。所有数据均在机构审查委员会(IRB)批准的书面知情同意下收集,参与者得到了时间补偿。

表1. 人口统计和临床特征

图片

MDD 指重性抑郁障碍,HC 指健康对照组,PPD 指持续性抑郁障碍,MADRS 指蒙哥马利-阿斯伯格抑郁评定量表,QIDS-SR 指快速抑郁症状清单自评版。*p < 0.05 表示与健康对照组相比,MDD组显著差异。

      MRI数据采集数据是在德国埃尔兰根的西门子Magnetom 7T MRI扫描仪上获得的,使用了32通道头部线圈(Nova Medical,威尔明顿,MA)。每次成像会话包括使用两次磁化准备快速梯度回波(MP2RAGE)序列获取解剖扫描,以改善T1加权对比度和空间分辨率【47】,参数如下:0.7毫米各向同性分辨率,240层切片,TR/TE = 6000/3.62毫秒,视野(FOV) = 240 × 320,翻转角(FA) = 0和5°,带宽 = 300。冠状斜面T2加权涡旋回波(T2-TSE)的参数如下:分辨率 = 0.43毫米 × 0.43毫米 × 2.0毫米,66层切片,TR/TE = 9000/69毫秒,FOV = 816毫米 × 1024,FA = 150°,带宽 = 279。最后,采集了高角度分辨率扩散加权成像(HARDI)序列:b = 1500 s/mm2,132层切片,TR/TE = 7200/67.6毫秒,FOV = 210毫米 × 210毫米,分辨率 = 1.05毫米各向同性,FA = 90°,梯度方向数为64,带有5个b = 0 s/mm2。5个b = 0采集在采集过程中交错进行,以纠正在时间点0.0、115.2、223.2、338.4和453.6秒的伪影。为纠正梯度畸变,采集了两个扩散MRI反向方向扫描。

      解剖数据处理使用FreeSurfer版本6.0的recon-all流程对T1加权图像进行预处理,包括非参数非均匀强度校正、强度标准化、去颅骨、去颈部、自动分割和分区步骤【48】。每个受试者的解剖大脑图像被分割成Desikan–Killiany图谱【49】和皮质下脑区域。在FreeSurfer开发版本6.0中使用T1加权和冠状斜面T2-TSE高分辨率图像对海马和杏仁核进行分割【34】。海马被分割成以下亚区域:前海马旁回、海马旁回、副海马旁回、CA1、CA3、CA4、齿状回的颗粒细胞层(GC-DG)、齿状回的分子层和海马-杏仁核过渡区。杏仁核被分割成外侧(LA)、基底(BA)、附加基底(ABA)、皮质(CoA)、内侧(MeA)和中央(CeA)核,以及皮质杏仁过渡区(CAT)(图1B)。所有FreeSurfer输出在分析过程中都经过手动检查,以确保分割质量、准确性和正确的配准。为确保亚区域足够大以进行准确的量化,将海马亚区域组合成CA1、CA3/4、海马旁复合体(前-、副-和海马旁回)和GC-DG(颗粒细胞层和分子层)(图1A)。由于杏仁核MeA体积小,作者选择从分析中排除此区域。所有亚区域的体积以扩散加权图像中的体素数量量化,并使用两样本t检验在MDD和HC之间进行比较。将整个大脑分割与海马和杏仁核亚区域(共98个ROI)合并成一个在受试者本地空间中的单一大脑分区图像。

图片

图1 海马和杏仁核亚区域分割。单一受试者的海马(A)和杏仁核(B)亚区域的FreeSurfer分割,叠加在T1加权图像上。

      扩散数据处理扩散数据使用MRtrix相位反转处理进行预处理和去噪。对扩散图像进行了B1场不均匀性校正【50】。使用球形反卷积【50】从扩散数据中估计纤维取向分布(FODs),并使用迭代加权线性最小二乘估计器计算扩散张量【51】。T1加权图像和大脑分割图像(结合海马和杏仁核亚区域)使用SPM12最近邻插值法与扩散空间进行配准。使用MRtrix软件进行全脑概率纤维追踪【52】。使用FOD幅度阈值0.1对纤维进行筛选。对所有纤维应用球形反卷积(SIFT2)算法,以消除不太可能物理准确的假流线【53】。最后,提取了所有ROI之间的纤维计数,创建成对结构连接矩阵。

      连接组分析为了构建大脑结构连接组,98个解剖分割的ROI中的每一个代表图中的一个节点,网络边由扩散MRI纤维追踪矩阵导出的任何成对ROI之间的纤维计数定义(图2A)。然后我们使用稀疏阈值S,保留每个受试者顶部连接的S%,以确保跨参与者的节点数和连接数匹配【6】。

图片

图2 连接组分析过程。

A 每个受试者的整个大脑分割与海马和杏仁核亚区域分割结合,构建了图的节点(共计98个ROI)。网络边(即连接)由使用概率纤维追踪的所有成对ROI之间的纤维计数定义,创建了结构连接矩阵。在从0.1至0.3的范围内对每个网络的顶部连接应用了阈值。然后我们检查了结构连接组局部网络中心性特征;

(B) 节点强度 - 连接到大脑区域的链接权重之和;

(C) 介数中心性 - 穿过给定区域的最短路径数量;

 (D) 聚类系数,量化一个节点的邻居们彼此之间的连接程度。最后,对于每个局部特征,使用所有网络密度下曲线下面积,以提供独立于单一阈值选择的测量。

      使用BCT工具箱 [54],我们检查了常见的局部节点中心性特征;(1) 节点强度,即连接到节点的链接权重之和(图2B);(2) 介数中心性,即穿过给定节点的最短路径数量的测量(图2C);以及 (3) 聚类系数,量化一个节点的邻居们彼此之间的连接程度,定义为节点周围三角形的分数(图2D)。我们在一系列阈值范围内检查了这些局部中心性特征(10% < S < 30%,以1%的步长)[6]。然后我们计算了每个网络特征的曲线下面积,这提供了独立于单一阈值选择的综合测量 [6]。

统计分析

      我们对每个区域的中心性测量进行了组间两样本t检验。年龄、性别和区域体积在所有分析中被视为协变量。为了统计显著性,我们对随机数据集进行了1000次重复的排列测试,通过将观察到的t值与随机网络结果进行比较,评估t检验发现的特异性。自助法检验的p值定义为获得小于观察结果的t统计值的随机案例数量的比例。最后,所有结果经过多重比较校正,共98次测试(区域数量),使用假发现率(FDR)校正 [55](q < 0.05)。

      对于MDD组,我们还单独进行了Spearman相关性分析,以评估海马和杏仁核亚区域中心性特征与MADRS评分测量的抑郁症状之间的关联。使用部分相关性来控制年龄、性别、亚区域体积和以往抗抑郁药物治疗史(1 = 有过药物治疗,0 = 无过去药物治疗)作为协变量。结果经过多重比较校正使用FDR(q < 0.05),其中海马亚区域校正共8次测试,杏仁核亚区域共12次(亚区域数量)。

结果

    两组在年龄和性别方面匹配(见表1)。MADRS(t(df)= 33.88 (75),p = 2.16E−46)和QIDS-SR(t(df) = 16.72 (70),p = 1.35E−25)呈现显著差异(表1)。对于双侧t检验,正态分布和等方差的假设得到了满足。

      为了测试我们关于网络拓扑结构与抑郁之间关系的假设,我们调查了MDD和HC之间在局部(例如,节点强度、介数中心性和聚类系数)亚区域网络特征(在整个大脑连接组中)的差异(图3)。我们发现与HC相比,MDD患者表现出右海马CA3/4亚区域(t(df) = 3.56 (71),p < 0.001,Cohen’s d = 0.73)、右苍白球(t(df) = 2.83 (71),p < 0.001,Cohen’s d = 0.59)、左中央前回(t(df) = 2.55 (71),p < 0.001,Cohen’s d = 0.58)和左中央后回(t(df) = 2.58 (71),p < 0.001,Cohen’s d = 0.60)的强度降低,所有结果均经过FDR校正(q < 0.05),并控制了年龄、性别、区域体积和以往抗抑郁药物治疗史(图3B)。换句话说,与HC组相比,这些区域在MDD组中与其余大脑网络的连接性较低。由于分析的重点是检查边缘亚区域在网络中的作用,我们进一步特定探索了右海马CA3/4边缘权重(连接两个区域的纤维束数量)。在进行多重比较校正后,未发现MDD和HC组之间显著的边权重差异。然而,在未经校正的阈值下的单侧两样本t检验中,观察到右海马CA3/4与右丘脑、视网膜周围区、下顶叶、海马旁回亚区域和杏仁核的外侧和基底核之间的纤维束数量减少(MDD < HC;p < 0.05,未经校正,补充材料中的表S2和图4A)。

图片

图3 连接组分析结果。

A 连接图显示了杏仁核和海马亚区域的超连接性(MDD > HC)和低连接性(HC > MDD)。图标(即热图内环)表示节点强度(粉色)、介数(紫色)和聚类系数(橙色)在组间差异(t值)上的表示,颜色越深表示组间差异越大。所有在p < 0.05未校正水平上两组之间显著不同的结构连接都被绘制为边。每个边根据大脑解剖叶区域进行颜色编码。杏仁核和海马亚区域显示出超连接性和低连接性,以及内、间半球连接。连接图的可视化使用Circos创建。小提琴图和局部网络特征节点强度(B)和聚类系数(C)的显著组间差异(p < 0.05 FDR校正)的排列测试直方图。直方图表示1000次排列测试的t值结果,垂直红线代表比较MDD与HC的真实t值。

图片

图4 海马CA3/4连通图及其与临床测量的关联。

A 与HC相比,MDD组的右海马CA3/4显示出显著降低的节点强度(与大脑网络其余部分的连接性较低)。连通图可视化显示了MDD组相比于HC的右海马CA3/4连接性降低。每个边根据大脑解剖叶区域进行颜色编码。连通图的可视化使用Circos创建。

B 患者QIDS评分测量的抑郁症状越重,右海马CA3/4节点强度越低。

C 杏仁核右CeA聚类系数特征与MADRS评分测量的抑郁症状呈正相关(**p < 0.05,FDR校正)在MDD组中。进一步探索还发现了与抑郁发作持续时间的相关性(*p < 0.05,未经校正)(D)。

     与HC相比,MDD患者还表现出右海马GC-DG(t(df) = 2.90 (71),p < 0.001,Cohen’s d = 0.61)、左楔叶(t(df) = 2.77 (71),p < 0.001,Cohen’s d = 0.65)和左丘脑(t(df) = 2.22 (71),p < 0.001,Cohen’s d = 0.50)的聚类系数降低,所有结果经过FDR校正(q < 0.05)(图3C),表明这些区域在患者中的簇嵌入程度较低。在进行多重比较校正后,介数中心性测量未在MDD和对照组之间显示出显著差异。

      除了控制区域体积外,还比较了扩散图像中杏仁核和海马亚区域的体积,以确定任何结构连接差异是否由体积差异驱动。MDD和HC之间没有亚区域体积显著不同(补充材料S1)。

      进一步调查MDD患者中与抑郁症状显著相关的结果,发现降低的海马CA3/4节点强度与QIDS-SR评分测量的自我报告抑郁症状显著相关(r = −0.53,p < 0.0035,FDR校正)(图4B)。

     此外,我们测试了仅限于边缘亚区域的网络拓扑结构是否与临床MADRS评分和自我报告的QIDS-SR评分以及抑郁发作持续时间相关。杏仁核右中央核的聚类系数与MADRS评分呈正相关(r = 0.49,p < 0.004,FDR校正),同时控制了年龄、性别、亚区域体积和以往抗抑郁药物治疗史(图4C)。右中央核的聚类系数也与抑郁发作持续时间呈正相关(r = 0.39,p < 0.03未经校正)(图4D)。

讨论

       通过应用高场7-T扩散MRI数据的数据驱动连接组方法,我们研究了边缘系统的杏仁核和海马这些微小结构在整个大脑网络中的角色和拓扑结构,以及它们与抑郁症状在MDD患者与HC中的关联。根据节点强度分析的网络层级表明,与HC相比,MDD患者的右海马CA3/4强度降低(即与大脑其他网络的连接减少)(图3B)。海马CA3/4的连接减少也与更严重的自我报告抑郁症状相关(图4)。这种海马CA3/4整体连接的减少可能是由于在海马右CA3/4与右旁海马内部以及与其他边缘结构(包括右丘脑和杏仁核的外侧和基底核)之间的纤维束数量减少趋势所驱动(图4A)。根据节点聚类系数分析的网络层级发现,与HC相比,MDD患者的海马GC-DG亚区域嵌入簇的趋势降低(图3C)。相比之下,杏仁核右中央核的更强聚类系数与MDD患者中更高的抑郁症状水平和抑郁发作持续时间相关(图4C,D)。这些结果表明,特定亚区域在与抑郁相关的整个大脑连接组中的参与有所改变。

      海马齿状回和CA 3是与抑郁最相关的亚区域【56】。在这里,这两个亚区域(即GC-DG和CA3/4)是唯一在MDD与HC之间表现出显著改变的连接模式的亚区域。海马CA3/4显示出与大脑其他网络的整体连接减少,而齿状回在MDD中表现出嵌入簇的趋势减少。在之前的研究中,我们发现MDD患者相比于HC的海马左GC-DG亚区域有较少的整体纤维束数量【36】,而在这里我们没有观察到GC-DG强度的显著降低。然而,右齿状回在MDD中确实表现出嵌入簇的趋势减少。这一结果可能表明,在海马GC-DG失效的情况下,网络缺乏耐受性(或补偿)。前临床研究表明,慢性压力或过度暴露于糖皮质激素(即人类的应激激素皮质醇,啮齿动物的皮质酮)会导致海马齿状回、CA以及特别是CA3的锥体神经元萎缩【57】。其他研究也表明,抗抑郁药物治疗可以预防和逆转CA3的萎缩【56, 58, 59】。一项对人类尸体的研究【21】发现,与HC相比,MDD患者的所有海马CA亚区域(CA1–CA4)锥体神经元体积显著减小,一项神经影像解剖学研究发现,MDD患者表现出所有CA亚区域的双侧体积减小模式【60】。在这里,我们展示了即使在控制海马CA3/4亚区域体积的情况下,其在整个大脑网络中的作用在未服用药物的MDD患者中也显著减少,表现出与大脑其他部分的连接减少。

       海马是边缘系统的一部分,已知其参与情节性和陈述性记忆的形成【61】。具体来说,海马通过乳头体和穹隆与丘脑的连接被认为对情节性事件记忆至关重要【62, 63】。在抑郁患者中,海马CA3/4亚区域的整体连接受损,特别是其与丘脑连接减少的趋势(图4A),与之前研究显示的抑郁症患者受损的情节记忆,特别是自传体记忆一致【64, 65】。此外,我们的结果还表明,抑郁症中右海马CA3/4与同侧BA和LA杏仁核的连接减少趋势(图4A),可能导致情绪记忆偏差。然而,这些结果必须谨慎解读,因为它们没有经过多重比较校正。

       虽然当前分析的重点是检查海马和杏仁核亚区域在整个大脑网络中的作用,但与HC相比,MDD中的几个其他大脑区域也表现出显著改变的连接模式。右苍白球、左中央前回和中央后回显示出节点强度降低(即与整个大脑网络区域的连接减少);左楔叶和丘脑显示出聚类系数降低(即嵌入簇的趋势减少)。这些区域的结构和功能的改变在许多先前的研究中与抑郁症相关联【66,67,68,69,70】。根据元分析,MDD患者显示出苍白球、丘脑【67】和中央前回【69】体积减少,楔叶体积增加【70】,以及中央前回和中央后回激活减少【68】。在这里,我们展示了在控制区域体积的情况下,它们在整个大脑网络中的作用在MDD患者中显著减少,表现出与大脑其余部分的连接减少或与簇的连接减少。

      探索疾病严重程度与亚区域连接组特征的相关性发现,杏仁核CeA亚区域的聚类系数与抑郁症状评分高度相关(图4)。较高的聚类系数表明该区域的邻居节点也高度相互连接(高度聚集)。以前的研究表明,杏仁核CeA与关键的皮质和皮质下脑区高度连接,作为一个中心节点调节应激反应以及恐惧和焦虑的各个方面【71,72,73,74,75,76】。据我们所知,这是首个人类研究显示CeA中心性(在网络中的中心地位)与抑郁严重程度之间的关联。

       本研究的主要局限性是小型边缘亚结构的部分体积效应和有限的样本大小。为了最小化部分体积效应,我们排除了在T2-TSE和T1图像上不能一致准确勾画的非常小的海马亚区域和杏仁核【36】。此外,我们将几个较小的构成区域合并到它们更大的亚区域(齿状回和海马旁复合体)。因此,当前分析中使用的最终边缘亚区域足够大,既可以使用超高亚毫米级分辨率的T1和T2-TSE成像进行分割,又可以使用1.05毫米各向同性扩散成像进行确定性纤维追踪。这项研究的另一个主要局限性是我们对MDD患者过去药物治疗效果的有限考虑。虽然参与者在临床评估和扫描前4周内和当时都没有服用抗抑郁药物,但我们的大多数患者过去都接受过药物治疗。为了排除任何混杂效应,我们在统计上控制了以往药物治疗。未来的药物治疗前瞻性研究可以揭示药物对边缘亚结构连接组的影响。

      总结来说,我们的发现通过检查边缘亚区域的整个大脑网络层级,增加了现有研究,并确定海马CA3/4和GC-DG亚区域作为MDD病理生理学中的关键节点,以及杏仁核CeA核作为预测抑郁症状水平的指标。与以往研究相比,本研究是在超高场7T数据集上进行的,这提供了信号质量显著提高的优势,因此允许更精确的分割和结构连接性分析。我们认为这些发现可能推进我们对抑郁症潜在机制及其与潜在治疗方法相关性的认识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值