童年肥胖及其不良健康后果在全球范围内呈上升趋势,在美国等高收入国家,低社会经济地位会增加这一风险。了解童年肥胖、认知、社会经济因素和大脑之间的相互作用对于预防和治疗至关重要。利用ABCD研究的数据,我们调查了体重指数(BMI)与大脑结构和功能连接指标之间的关系。与正常体重儿童(n = 4,754)相比,肥胖/超重儿童(n = 2,356)更可能生活在贫困中,并表现出较低的认知能力。较高的BMI与多项大脑测量指标相关,其中最显著的是胼胝体纵向扩散率降低、小脑、岛叶和躯体运动皮层活动增加,以及多模态大脑区域功能连接减弱,这些影响在低收入家庭的儿童中更为明显。值得注意的是,低收入与BMI关联的近80%和认知障碍与BMI关联的70%是由躯体运动区域的较高脑活动所介导的。躯体运动区域静息活动增加以及结构和功能连接减弱可能导致低收入家庭儿童超重/肥胖风险更高。支持低收入家庭并实施教育干预以改善认知能力可能促进健康的大脑功能并降低肥胖风险。本文发表在JCI Insight杂志。
引言
儿童肥胖在全球范围内呈上升趋势,目前估计美国有19.7%的儿童肥胖。多种因素导致儿童肥胖,包括家庭低收入、遗传、环境因素如食品荒漠、缺乏锻炼开放空间等。由于儿童肥胖可能干扰正常的大脑发育(5-8)并与认知功能下降有关,因此迫切需要更好地了解它如何影响大脑功能。
大脑在幼儿期迅速成熟,6岁时已达到成人大小的约90%。此外,随着儿童进入晚期儿童期和青春期,白质(WM)体积和白质纤维束的各向异性分数(FA)通常会增加,而灰质体积减少,大脑功能连接重组,某些网络连接减少而其他网络增加。虽然体重指数(BMI)与大脑结构和功能连接的关系复杂且可能是双向的,但BMI与大脑发育过程中结构和功能连接改变的确切机制和程度仍不清楚。此外,由于贫困也会对大脑发育和认知功能产生负面影响,评估家庭收入对BMI与大脑连接和认知关系的影响也很重要。更好地理解BMI与大脑发育之间的复杂相互作用可能有助于指导儿童肥胖的预防和治疗策略。
在此,我们测量了BMI与大脑活动、连接(结构和功能)以及认知表现之间的关联,并评估了家庭收入对这些关联的影响。我们假设BMI与大脑结构、功能和认知表现之间存在双向关联,这种关联在低收入家庭的儿童中可能会加剧。为此,我们使用了青少年脑认知发展(ABCD)研究的基线数据,这些数据收集于儿童9-10岁时,并将样本分为发现和复制子样本,以评估研究结果的可重复性。
为测量白质纤维提供的结构连接,我们使用了扩散张量成像(DTI)指标,包括FA、平均(MD)、纵向或轴向(lD)和径向(rD)扩散率。为测量静息大脑活动,我们绘制了低频波动分数振幅(fALFF)图,它测量自发大脑活动。为量化静息功能连接,我们绘制了全局功能连接密度(gFCD)图,这是一种对认知表现和家庭收入敏感的测量。为评估认知,我们使用了晶体、流体和总体智力的综合得分。鉴于先前在儿童中观察到的BMI与白质完整性的关联,我们特别假设较高的BMI与较低的认知表现、初级皮层区域较高的静息大脑活动以及较弱的结构和功能连接相关,且这些影响在低收入家庭的儿童中会更加明显。
为解决这些关系的复杂性,我们采用因果中介分析(CMA)来检验假设的双向关联。在我们的模型中,我们将BMI同时作为自变量和因变量处理,使我们能够测试其对大脑和认知结果影响的方向性。我们将家庭收入作为调节变量,以探讨社会经济地位如何影响这些关系。
方法
性别作为生物学变量。本研究的发现不仅适用于单一性别,因为分析中包括了女孩和男孩。具体来说,研究包括了3,414名女孩和3,696名男孩,确保了两性的代表性。性别根据出生时的生物学特征定义。ABCD研究(本研究数据来源)收集了性别和性别认同数据,确保了全面的数据收集实践。体重指数对大脑连接性的影响没有显著的性别差异。因此,在统计分析中,性别被视为无关协变量,以解释任何可能与性别相关的变异性。
参与者
多中心纵向ABCD研究跟踪超过11,800名儿童10年,直至成年早期,每年进行基于实验室的评估,每两年进行一次MRI。排除标准包括医疗、神经系统或认知问题、英语水平不足,或MRI禁忌症。
在本研究中,我们分析了ABCD研究2.0数据发布中9,521名儿童的基线神经影像和行为数据,这些儿童有可用的CIFTI格式的白质扩散指标和静息态fMRI数据。在功能连接性分析中,我们排除了560名静息态fMRI期间头部运动过大的参与者(>50%的时间点帧间位移FD<0.5mm),282名体重过轻(BMI<第5百分位),以及284名缺少关键信息(BMI、认知综合评分或家庭收入)的参与者。为了最小化变异性,我们将研究限制在非裔美国人、西班牙裔和白人种族群体,排除了1,105名亚洲(n=162)或混血(n=943)种族的参与者。因此,BMI和静息态功能连接性研究的最终样本包括7,290名儿童(3,501名女孩和3,789名男孩)。结构连接性指标的研究限制在4,797名参与者(发现组2,386名和复制组2,411名;2,283名女孩和2,514名男孩),他们在西门子扫描仪上进行MRI扫描,以最小化ABCD研究中DTI指标在MRI扫描仪之间的变异性。
体重指数(BMI)
儿童的BMI从ABCD青年人体测量数据中提取,该数据从国家精神卫生数据档案下载。我们使用疾病控制和预防中心(CDC)国家卫生统计中心提供的临床生长图表根据年龄和性别确定BMI百分位,以确定正常体重(第5百分位< BMI < 第85百分位)和超重/肥胖(BMI > 第85百分位)的类别。
行为数据
我们从NDA下载了NIH工具箱计算的标准流体、晶体和总体认知综合评分。未校正的流体综合评分使用以下测试计算:1)模式比较处理速度;2)列表排序工作记忆;3)图片序列记忆;4)Flanker;和5)维度变化卡片分类。晶体综合评分使用6)口语阅读识别和7)图片词汇测试计算。流体和晶体综合评分用于计算总体认知综合评分。
家庭收入
ABCD研究使用10个收入档次调查年度家庭收入[1) < $5,000; 2) $5,000–12,000; 3) $12,000–16,000; 4) $16,000–25,000; 5) $25,000–35,000; 6) $35,000–50,000; 7) $50,000–75,000; 8) $75,000–100,000; 9) $100,000–200,000; 10) > $200,000]。这些数据从NDA下载。
抑郁
为评估由抑郁导致的功能障碍,我们使用了从NDA下载的ABCD父母诊断访谈(abcd_ksad01)。
MRI数据
对于功能连接分析,我们使用了ABCD脑成像数据结构(BIDS)社区集合(ABCC),其中包括10,038名儿童通过质量保证的静息态fMRI数据。ABCD-BIDS使用了修改版的HCP流程,以适应来自所有21个ABCD站点的GE、Phillips和Siemens扫描仪和头部线圈,这最大限度地减少了由MRI扫描仪差异引起的不必要变异性。ABCD成像程序针对3T MRI扫描仪(Siemens Prisma、Phillips和General Electric 750扫描仪)进行了标准化,这些扫描仪配备了成人大小的多通道线圈,能够执行多频带回波平面成像(EPI)。这些程序在21个站点实施,更多细节可以在其他地方找到(引文87, 89)。简而言之,结构MRI采用3D T1w反转准备射频扰相梯度回波和T2w可变翻转角快速自旋回波脉冲序列,分辨率为1mm等方。功能MRI(fMRI)数据使用T2*加权多频带回波平面成像(EPI)获得,参数包括TE/TR为30/800 ms,2.4 mm等方分辨率,52度翻转角,60个切片覆盖整个大脑,多频带切片加速为6。使用多频带EPI获得1.7mm等方分辨率的扩散MRI数据,切片加速因子=3,五个b值(b = 0, 500, 1000, 2000, 和 3000 s/mm2),以及96个扩散方向。在ABCD 2.0数据发布中,使用了一种概率方法来自动标记所有主要白质束(引文92),同时排除灰质(GM)和脑脊液(CSF)体素。
可重复性
参与者被分为3个独立的人口统计学匹配的子样本:Discovery (N=3,597, 女孩=1,765)、Replication (N=3,513, 女孩=1,649)和Normality (N=180; 女孩=87),使用ABCC的"匹配组"状态,该状态基于可能影响脑发育的社会人口因素(年龄、性别、种族、年级、父母最高教育水平、惯用手)。
质量控制
ABCD研究的自动QA程序在其他地方有描述。此外,图像还经过了特定于扫描仪的梯度畸变和强度不规则性的校正。经过训练的评估员审查了图像,寻找可能妨碍脑分割的潜在问题,如低质量和伪影,如模糊、重影或环形伪影。
ABCD-BIDS流程
与人类连接组项目(HCP)流程类似,ABCD-BIDS流程包括5个连续步骤:PreFreesurfer,执行脑提取、去噪和结构数据标准化到标准模板;Freesurfer,使用FreeSurfer执行脑分割和创建大脑表面,这已在儿童中得到验证;PostFreesurfer,将脑表面转换为HCP兼容的CIFTI格式;fMRIVolume,将功能时间序列配准到体积标准模板;fMRISurface,将功能时间序列数据转换为CIFTI格式。HCP和ABCD-BIDS流程之间的差异在其他地方有详细描述。简而言之,ABCD-BIDS流程不需要T2w图像,并在PostFreeSurfer中执行非线性配准到标准图谱,这提高了配准的有效性。此外,ABCD-BIDS流程使用ANTS进行非线性配准,该方法始终优于其他非线性配准方法。此外,ABCD-BIDS流程中的fMRISurface步骤包括功能连接预处理,将真实头部运动与由呼吸相关磁场变化引起的虚假运动分开,并通过回归出时变头部运动、白质和CSF信号以及可能影响组间比较的全局信号,从360个皮质分区和19个从Freesurfer获得的皮质下分区(HCP2016FreeSurferSubcortical_dparc.dlabel.nii)中的密集(dtseries)和分区(ptseries) CIFTI数据集中执行标准去噪,这也包含在ABCD-BIDS社区集合(ABCC)的数据发布中。
头部运动
使用ABCD-BIDS流程确定的运动审查数据被用来消除FD>.5mm的时间帧。解决头部运动问题在儿童结构和功能神经成像中至关重要。为了解决这个问题,我们还考虑了受试者在静息态fMRI扫描期间的平均FD,作为他们在扫描仪中头部运动倾向的指标。
结构连接性
为了评估白质完整性,我们使用从NDA下载的表格化扩散成像指标,包括分数各向异性(FA)、径向扩散率(rD)、纵向扩散率(lD)和平均扩散率(MD),这些在其他地方有描述(引文87)。
fALFF和gFCD
低频波动分数幅度(fALFF)用于量化0.01-0.1Hz低频带中静息态fMRI信号波动的比例,这是脑活动的标记。全局功能连接密度(gFCD)映射用于量化给定脑坐标与所有其他脑坐标的功能连接密度。gFCD等同于功能连接总数的对数,使用Pearson相关计算。具体来说,如果两个灰质坐标的时变信号相关性R>.6,则认为它们在功能上是相连的。fALFF和gFCD在每个脑灰质坐标上从个体时间序列映射,N=91,282个灰质坐标,最多1520个时间点(20分钟),使用Matlab 2017b和NIH的Biowulf集群。
ROI分析
在379个分区和28个小脑分区内独立计算每个个体的平均ROI值,以评估fMRI指标(fALFF和gFCD)与认知和家庭收入的关联。此外,在12个静息态网络内独立平均个体功能连接组的边,以评估网络内和网络间连接性。
功能专化指数
为了评估ROI的整体功能专化,我们使用了人类大脑皮层的多模态分区,该分区记录了每个ROI与3个听觉、躯体运动和视觉领域的关联程度。具体来说,功能专化指数被定义为领域间专化的绝对差异S1=听觉vs躯体感觉;S2=听觉vs视觉;S3=躯体感觉vs视觉:功能专化指数=max(Si)-mean(Si),并在360个图谱分区中标准化为1。
因果中介分析(CMA)
使用"mediation"包来估计因果中介效应。使用1000个自助抽样样本和协方差矩阵的异方差一致估计器来估计平均直接效应(ADE)和因果中介效应(ACME)以及中介比例。
统计分析
在独立的Normality子样本中,我们使用Shapiro-Wilk正态性检验(106) (W>.98; p>.5)确认了成像指标的正态分布。在统计分析之前,我们使用总平均缩放去除了特定于站点和扫描仪的差异,独立回归了男孩和女孩的头部运动和脑容量效应,并去除了与种族相关的效应。然后,在MATLAB中独立对Discovery和Replication子样本进行协方差分析(ANCOVA),使用性别协变量评估BMI对因变量Y(fALFF或gFCD)的主要效应。在后续的ROI分析中,使用R中的ANCOVA评估BMI和性别对Y(FA、MD、lD、rD、fALFF或gFCD)的影响。我们使用假发现率阈值pFDR<.05来校正91,282个灰质坐标或379个ROI的多重比较;对于DTI测量,我们使用Bonferroni校正跨越AtlasTrack(92)中42个主要白质束。在R中进行Pearson相关分析,以评估特定ROI内平均脑指标(Y)与认知综合得分和家庭收入的关联。
研究批准
美国21个数据收集站点的地方机构审查委员会(IRB)和加州大学圣地亚哥分校的IRB批准了ABCD研究。招募复制了美国一般人口的人口特征。儿童提供书面同意参与,父母提供书面知情同意。
结果
人口统计特征
在本研究的7110名儿童中,根据年龄和性别的BMI第85百分位,4754名为正常体重(67%),2356名超重或肥胖(33%)。这种分类方法在儿科研究中是标准的,因为它考虑到随生长和发育自然发生的BMI变化。因此,儿童的超重和肥胖不是使用固定的BMI阈值定义的(如用于成人的BMI > 30)。这些比例与2017-2018年期间2-19岁美国儿童和青少年中超重或肥胖(35.4%)的报告率一致,该时间段对应于ABCD基线数据收集的时间框架。种族和民族差异分析显示,来自非裔美国人(30%和18%)和西班牙裔(25%和19%)家庭的肥胖和超重儿童比例高于白人家庭(10%和14%)。收入差异分析显示,肥胖和超重儿童更可能生活在贫困中(在美国定义为家庭收入低于25,000美元),与正常体重儿童相比,肥胖和超重儿童的比值比分别为.20和.15,而正常体重儿童为.09。肥胖/超重儿童比正常体重儿童更可能表现出抑郁症状(6.1% vs 3.3%; 2(1, N=4,422) = 16.4, P=3.3E-05)。
Discovery和Replication子样本
Discovery和Replication样本之间正常和肥胖/超重儿童的比例没有差异(2=2.3; P=.13)。Discovery和Replication子样本之间在脑容量、性别和MRI制造商比例方面存在最小差异(表1)。
按体重类别的BMI、人口统计和认知的可重复性
BMI在Discovery和Replication数据集中都显示出一致的右偏分布(偏度=1.5,峰度=4.0),这可以通过体重类别来解释(图1A)。性别之间BMI没有差异(补充图S1)。正常体重和肥胖/超重儿童的BMI随年龄增长显示类似的增加(图1B)。BMI与家庭收入等级呈负相关,即较高的BMI与较低的家庭收入相关,这在肥胖/超重和正常体重组中独立显著,无论是Discovery还是Replication样本(图1, C和D)。然而,请注意,在正常体重组中,Discovery(r= -.094)和Replication(r=-.077)样本的相关性很小(图1, C和D)。
图1. 体重指数(BMI)、年龄、家庭收入和认知。
3,696名男孩和3,414名女孩(4,754名正常体重和2,356名肥胖/超重儿童)的BMI分布(A)及其随年龄增加的趋势(B),以及在Discovery(n=3,597)和Replication(n=3,513)子样本中的可重复性。在肥胖/超重儿童中,较高的BMI可重复地与较低的家庭收入(C)和总体认知得分(E)相关。与正常体重儿童相比,肥胖/超重儿童更可能来自较低收入家庭(D),并且在认知任务上表现较差(F),这在Discovery和Replication子样本中独立表现。基于年龄和性别的BMI百分位数用于确定体重类别。数字标签是双侧p值,反映了Pearson相关分析(R; b, c和e)或t检验(d和f)的结果。伴随线性拟合的阴影区域表示95%置信区间。
认知得分在组间存在差异,肥胖/超重儿童的得分低于正常体重儿童,无论是Discovery还是Replication样本(图1F)。在肥胖/超重儿童中,BMI与总认知综合得分呈负相关,即较高的BMI与较低的得分相关,而在正常体重儿童中相关性不显著(图1E),这表明存在BMI负面影响认知的阈值效应。体重类别、家庭收入等级和总认知综合得分对BMI的主要影响,以及体重类别与家庭收入的交互作用在Discovery和Replication子样本中独立显著(P<7E-5; F(1,3240)>15.8; ANCOVA; 补充表S1)。
年龄、BMI和家庭收入与结构连接性的关联
我们使用ANCOVA调查年龄和BMI与白质完整性的关联。模型包括2个体重类别/组(超重/肥胖和正常体重),2个自变量(年龄和BMI),和一个因变量(FA、MD、lD或rD)。对每个DTI指标和ROI独立进行ANCOVA。我们的分析显示MD与年龄、lD与BMI呈负相关,年龄与FA呈正相关(图2, A和B)。虽然较大年龄与较高的FA和较低的MD、lD和rD相关(图2, A和C),但年龄相关的变化在MD上比在FA、lD和rD上更显著,特别是在上皮质-纹状体纤维中。
较高的BMI与许多纤维束中校正年龄后的lD(纵向扩散率)降低相关,特别明显的是在胼胝体(R(4,796)=-.24; p<2E-16; Cohen's d=.49; 图2B)、小钳、钩状束、前丘脑辐射、海马旁-扣带和扣带-扣带纤维束(R(4,796)<-.15; p<2E-16)。顶叶和额叶皮质-纹状体束中的负相关不能一致地重复。较高的BMI与双侧多个区域校正年龄后的MD和rD降低一致相关,包括钩状束和纹状体下额叶、扣带-扣带纤维束、胼胝体、小钳和大钳,以及左侧穹隆、上皮质-纹状体额叶纤维束和左前丘脑辐射(见图2B)。此外,BMI增加与几个区域校正年龄后的FA降低相关,包括双侧穹隆、右上纵束,以及右下到上额叶、纵束到右颞叶皮质和双侧上顶叶皮质白质纤维束。
按体重组分别分析显示,胼胝体中的lD(纵向扩散率)在两组中都随年龄降低(图2C),在肥胖/超重儿童中低于正常体重儿童(图2D)。胼胝体中的lD在肥胖/超重和正常体重儿童中都与家庭收入有可重复的正相关,在肥胖儿童中与流体综合得分有正相关(R(404)>.11; P<.045, 双侧),但在正常体重儿童中的关联不可重复(图2, D-F)。BMI与胼胝体中lD的负相关在肥胖/超重儿童中显著强于正常体重儿童,无论是Discovery还是Replication样本(z>4, P<1E-05; 图2D)。年龄、BMI、体重类别、总认知综合得分和家庭收入对胼胝体中lD的主要影响显著(F(1,4410)>9, P<.003; ANCOVA; 表S2)。
图2. 与BMI和年龄的关联:白质扩散
A) 年龄和B) 体重指数(BMI)与42个主要白质纤维束中经脑容量校正的分数各向异性(FA)、平均扩散率(MD)、纵向扩散率(lD)和径向扩散率(rD)的相关性,分别在Discovery(n=2,386; 1625名正常体重和761名肥胖/超重)和Replication(n=2,411; 1609名正常体重和802名肥胖/超重)子样本中展示。胼胝体中lD与年龄(C)、BMI(D)、家庭收入等级(E)和流体认知综合得分(F)的线性关联。本分析仅使用西门子MRI扫描仪收集的数据。统计分析采用ANCOVA模型,使用假发现率(FDR)校正阈值pFDR<.05。基于年龄和性别的BMI百分位数用于确定体重类别。伴随线性拟合的阴影区域表示95%置信区间。
BMI与大脑活动和功能连接的关联
为评估儿童BMI相关的静息脑活动和功能连接差异,我们使用了fALFF和gFCD指标,这些指标在Discovery和Replication子样本中显示出高度可重复性(补充图S2和S3)。顶点级ANCOVA揭示了BMI与fALFF之间的正相关,在小脑中最大(Cohen's d=.12),并在所有皮层下区域(补充图S4)、岛叶-扣带、躯体运动和前运动区、辅助运动区、眶额皮层、中扣带回、早期和MT+视觉区以及外侧和内侧颞叶皮层中双侧显著(PFDR<.05; 图3A)。这种模式在Discovery和Replication子样本中表现出高度可重复性(补充图S5)。BMI-fALFF相关模式在背外侧前额叶、上下顶叶皮层(包括楔前叶)的重叠最小(~6%; 补充图S6),表明BMI与这些区域的fALFF关联较弱。相比之下,较高的BMI与较低的gFCD相关,在楔前叶(7m区域; Cohen's d=.18)最大,并在其他默认模式网络(DMN)区域(后扣带回、角回和内侧前额叶皮层、PFC)、上额回、下中颞回、初级和次级视觉区、下上顶叶皮层、前运动皮层、背外侧PFC、额极和前小脑叶中双侧显著(PFDR<.05; 图3B)。这些模式在Discovery和Replication子样本中具有高度可重复性(补充图S7)。
我们应用了功能专化指数来区分单模态皮层区域(如视觉、听觉和躯体运动皮层,特征是高专化指数>0.5)和异质模态联合皮层区域(如岛叶、背外侧前额叶皮层和下顶叶皮层,特征是较低的专化指数),以映射与BMI的关联。BMI与fALFF的关联在单模态区域(36%)的重叠比BMI与gFCD的关联(11%)更明显(图3)。
图3. BMI与fALFF和gFCD的关联。
统计显著性(t-分数)展示了7110名儿童中体重指数(BMI)与以下指标的关联:
A) 低频波动分数幅度(fALFF)
B) 全局功能连接密度(gFCD)
以及功能专化指数的得分,该指数突出显示了单模态皮层区域(视觉VIS、听觉AUD和躯体运动SM皮层;详见正文)。这些结果呈现在左(L)和右(R)大脑半球的平面(顶行)以及外侧和内侧膨胀表面(中间和底行)上。黑线表示人类大脑皮层360个多模态分区的轮廓(27)。
统计模型:ANCOVA(协方差分析)。
fALFF和gFCD与认知、家庭收入和FA的关联
为了检验BMI、静息态指标(fALFF和gFCD)和认知综合得分作为家庭收入函数的关联,我们在人类大脑皮层的多模态分区的特定ROI内测量了它们跨体重类别的Pearson相关性。较低的认知表现与较高的fALFF相关,主要在岛叶、扣带回和躯体运动皮层以及皮层下和小脑区域(图4A)。这种关联在正常体重和肥胖/超重儿童中以及Discovery和Replication子样本中都是一致的(补充图S8和S9; R>.14, P<2E-08)。此外,较低的家庭收入与枕叶和内侧颞叶区域、岛叶、中扣带回和躯体运动皮层的较高fALFF相关(图4B),独立于体重类别和Discovery和Replication子样本(补充图S8和S9; R>.09, P<.001)。此外,较低的认知表现与DMN和额顶网络(FPN)区域的较低gFCD以及外侧视觉区、辅助运动叶和中扣带皮层的较高gFCD相关(图4A);这种关系在体重类别和子样本中是一致的(补充图S9和S20; R>.74, P<.003)。此外,较低的家庭收入与FPN和DMN区域的较低gFCD相关,与外侧视觉区、躯体运动皮层、辅助运动叶和中扣带皮层的较高gFCD相关(补充图S9和S10; R>.072, P<.007)。fALFF和gFCD的相关模式在Discovery和Replication子样本中都大体上是互补的,即fALFF相关性高的脑区gFCD相关性低(家庭收入:R(379)>.64;总综合:R(379)>.52;P<1E-20)。虽然报告的相关性是显著的(范围约从.06到.15)且可重复,但它们表现出适度的效应大小,这是由于ABCD研究的大样本量而可检测到的。
全脑白质束的较高平均FA与较高的gFCD和较低的fALFF相关,独立于体重类别(R>.14; P<1.5E-08; 图4A)。
图4. 与认知、收入和分数各向异性(FA)的关联。
在Discovery子样本中,较高的认知综合得分(A)或家庭收入等级(B)与岛叶、扣带回、外侧视觉和躯体运动皮层的低频波动分数幅度(fALFF)较低相关,与额顶叶和默认模式网络区域的全局功能连接密度(gFCD)较高相关,以及与躯体运动皮层和外侧枕叶区域的gFCD较低相关。C) 较高的FA(平均所有脑白质纤维)与内侧上颞区(MST)的fALFF较低以及楔前叶(7m)的gFCD较高相关,这种关联在肥胖/超重(n=2,356; 红色)和正常体重(n=4,754; 绿色)儿童中独立存在。较高的体重指数(BMI)与楔前叶的gFCD降低相关,这种关联在不同体重类别中都独立存在,并且只在肥胖/超重儿童中与fALFF增加相关。右大脑半球。黑色轮廓描绘了右大脑半球180个感兴趣区(ROIs)的边界。基于年龄和性别的BMI百分位数用于确定体重类别。伴随线性拟合的阴影区域表示95%置信区间。
皮层下区域和小脑中BMI的效应
我们还评估了BMI、静息态活动和皮层下ROI内连接性之间的关联。BMI与fALFF的正相关在所有19个皮层下ROI中双侧可重复(P<.05,Bonferroni校正),且在体重类别之间无差异(补充图S11);与gFCD的相关仅在双侧小脑中可重复。在小脑内,fALFF与BMI的正相关在IV、V、VIIIb和IX小叶双侧可重复,且在体重类别之间无差异。BMI与gFCD的线性关联斜率在IV、VI、VIIb、VIIIa和IX小叶以及Crus I(不包括蚓部)和Crus II、V(右侧)和VIIIb(蚓部)双侧为负,而在双侧后小脑(VIIb和VIIIa小叶,以及蚓部VIIIa)中,肥胖/超重儿童的关联弱于正常体重儿童(P<.001,双侧t检验)。
因果中介分析(CMA)
我们使用CMA模型1来研究通过fALFF或gFCD连接家庭收入和认知表现与BMI的间接路径(图5, A和D)。我们的分析揭示了家庭收入对BMI的一致间接关联,通过双侧躯体运动区、岛叶、扣带回和小脑的fALFF,以及通过FPN和DMN区域的双侧gFCD中介(PACME<.001; 图5, B和C,补充图S12和S13)。具体来说,双侧上额语言区(SFL)、视觉皮层(V3)和前运动区(6d)表现出最强的fALFF对家庭收入和BMI关联的中介效应(>78%; 补充图S13)。对于家庭收入,fALFF的平均中介比例(Discovery: 37%, Replication: 36%)高于gFCD(Discovery: 14%, Replication: 7%; t(436)>10; P<2E-21)。此外,这些区域的fALFF和gFCD一致地作为认知表现和BMI关联的部分中介(PACME<.001; 图5, E和F,以及补充图S14)。对于总综合得分,fALFF的平均中介比例(Discovery: 31%, Replication: 32%)也高于gFCD(Discovery: 7%, Replication: 11%; t(624)>14; P<4E-42)。fALFF中介总认知对BMI关联间接效应的区域比中介家庭收入对BMI间接效应的区域更广泛。
此外,我们使用CMA模型2来补充我们的分析,检验通过家庭收入和认知表现连接大脑功能连接性与BMI关联的间接路径(补充图S15)。我们的分析揭示了家庭收入对BMI与双侧岛叶和中扣带回fALFF关联的弱但一致的中介效应(补充图S15),以及对BMI与FPN和DMN区域双侧gFCD关联的中介效应(PACME<.001; 补充图S16)。对于家庭收入,gFCD的平均中介比例(Discovery: 5%, Replication: 4%)高于fALFF(Discovery: 2%, Replication: 2%; t(243)>6.8; P<1E-10)。此外,认知表现一致地作为这些区域fALFF或gFCD与BMI之间的适度中介(PACME<.001; 补充图S15和S16)。具体来说,对于总综合得分,gFCD的平均中介比例(Discovery: 9%, Replication: 9%)高于fALFF(Discovery: 7%, Replication: 6%; t(293)>3.9; P<1E-04)。CMA模型1的中介比例大于CMA模型2的中介比例。
图5. 因果中介分析(CMA; 模型1)。
家庭收入(A-C)或认知表现(D-F)与体重指数(BMI)关联的总效应中,由低频波动分数幅度(fALFF)或全局功能连接密度(gFCD)中介的比例。这些结果叠加在右大脑半球的外侧和内侧表面上,分别用于Discovery样本(n=3,597名儿童)和Replication样本(n=3,513名儿童)。黑色轮廓描绘了右大脑半球180个感兴趣区(ROIs)的边界。阈值设定为PACME < .001。
讨论
美国儿童中肥胖症的高发病率引发了对其对大脑发育影响的担忧,因为越来越多的证据表明,儿童肥胖与大脑功能和结构以及认知的不利影响有关。获取ABCD的大型纵向数据集增加了研究肥胖对大脑结构(包括白质完整性)、功能(包括功能连接)和认知影响的能力。然而,这些影响的可重复性和意义仍不清楚。在这里,我们使用ABCD研究中的大型美国儿童队列调查了BMI对DTI和静息态fMRI指标的影响,同时严格控制了混杂的人口统计变量(如年龄、性别、种族)、头部运动和脑容量,以及研究特定变量(扫描仪制造商和研究站点),分别在Discovery和Replication样本中进行。我们发现BMI与自发性脑活动(由fALFF指标)呈正相关,与大脑连接性(结构和功能)、家庭收入和认知呈负相关,在Discovery和Replication子样本中均可重复。自发性脑活动(主要在躯体运动区)部分中介了结果,使得家庭收入和认知表现对其与BMI关联的总效应中近80%是通过躯体运动皮层的fALFF中介的。这表明社会经济地位或认知表现的变化可能部分通过影响这些脑区的活动来影响BMI。值得注意的是,fALFF对认知表现和BMI关联的中介效应在大脑中比家庭收入观察到的更广泛,表明认知独立于家庭收入对BMI有贡献。
我们发现BMI升高与胼胝体的lD(纵向扩散率)降低有可重复的关联(Cohen's d=.49),以及与其他白质束的较不明显但仍显著的关联。轴向扩散率(lD)测量水分子沿白质纤维主轴的扩散速率,提供了白质微观结构完整性的信息。胼胝体在功能侧化和协调认知、感觉和运动系统方面起着关键作用,这些系统对有意识体验是必要的。我们的发现与之前在成人和青少年中进行的DTI研究一致,这些研究报告了BMI与胼胝体FA降低或MD增加的相关性,也与肥胖中白质完整性受损的观点一致(29)(见Kullmann等人的综述(8))。这个区域较低的纵向水分扩散可能表明半球间连接性降低,这可能减少左右皮质区域之间的信息整合,并导致高BMI儿童报告的认知障碍。FA与fALFF和gFCD的可重复线性关联与大脑活动和功能连接受大脑结构连接影响的假设一致。
较高的BMI与内感受、躯体运动、内侧视觉、皮层下和小脑区域的fALFF增加相关(Cohen's d=.11)。这表明与正常体重儿童相比,肥胖和超重儿童在这些区域的局部神经元活动增加。这些发现与肥胖男性相比瘦男性大脑自发静息活动的同步性或幅度更高的报告一致。
与BMI和fALFF的正相关相反,与gFCD的关联是负面的,主要影响多模态联合皮层。高BMI儿童表现出较低的gFCD,在默认模式和扣带-岛叶区域效应最强(Cohen's d=.16)。gFCD映射了脑区的整体功能整合,对比了少数代谢需求高的枢纽(协调主要静息态网络与大量弱互连的脑网络节点)。与gFCD最强关联的是楔前叶,这是大脑的主要枢纽之一,参与高度整合的内部和外部驱动过程。fALFF和gFCD与BMI的相反模式让人联想到我们之前报告的甲基苯丁胺效应模式。虽然甲基苯丁胺被开具用于改善ADHD儿童的注意力,但它也导致体重减轻,并被用于减少肥胖儿童的体重。就楔前叶gFCD增加与较高的认知得分相关而言,它表明gFCD降低可能促进增加肥胖风险和损害认知表现的过程。
我们的发现在Discovery和Replication子样本中可重复,并与超重或肥胖个体DMN低连接性的先前发现一致。这些发现表明肥胖与涉及自我参照处理的大脑网络连接扰动相关。至关重要的是,DMN内gFCD和胼胝体lD的BMI相关降低在Discovery和Replication子样本中均呈正相关,表明BMI影响了功能和结构大脑连接。这一发现与胼胝体在促进分布式网络功能连接中的作用一致。由于ABCD研究是纵向的,随时间监测这些儿童将能够评估高BMI是否触发结构和功能连接的破坏。它还将有助于确定体重减轻的儿童是否表现出连接性改善,而体重未减轻的儿童则不会。此外,检查非超重或肥胖儿童的连接破坏是否可以预测未来肥胖的发展,将可以表明连接受损可能作为一个脆弱性因素,增加肥胖的风险。
在本研究中,肥胖儿童的流体和总体认知综合得分低于正常体重儿童,并与肥胖儿童的BMI成比例下降,这与ABCD儿童中BMI和执行功能的负相关一致。我们研究中表现出较低认知综合得分的儿童还表现出胼胝体lD降低和楔前叶gFCD降低。这些发现与我们的假设一致,即流体认知的损伤反映了DMN区域信息整合的降低,并可能受到与BMI相关因素的影响。注意,晶体化综合得分与BMI缺乏关联与先前ABCD研究一致,这些研究报告了BMI相关的总体和流体认知下降,但晶体化认知不受影响。虽然肥胖儿童lD和gFCD降低的相关机制尚不清楚,但它们可能部分反映了与肥胖相关的神经炎症变化。
较高的家庭收入与较低的BMI相关,这与美国儿童家庭收入和BMI的负相关一致,部分反映了致肥食品比健康食品成本更低。收入还与胼胝体的lD(纵向扩散率)和DMN区域的gFCD呈正相关,这与我们先前的发现一致。各种研究表明,来自低收入家庭的儿童认知表现较差,皮质更薄,皮质表面积和体积更小,在工作记忆和决策MRI任务中的大脑激活较低,分数各向异性较低,并且在青春期更容易变得肥胖或超重。这些结果共同表明,过度体重(可能反映了多种因素,如不当饮食、体力活动减少、代谢受损、遗传、环境毒素、内分泌疾病、睡眠不足、压力、激素失衡,以及在某些情况下可能存在的执行控制功能障碍等)导致我们在低收入家庭儿童中观察到的胼胝体白质扩散和DMN功能连接降低。
在这里,我们记录了fALFF在家庭收入和认知表现与BMI关系中的部分中介效应。对收入和认知而言,中介fALFF与肥胖关联的共同脑区包括躯体运动皮层、岛叶、扣带回和小脑。识别出岛叶和扣带回,这些是参与执行控制的扣带-岛叶网络(CON)的区域,作为家庭收入和认知表现与BMI之间的中介,这与突显网络(是CON的一部分)在控制儿童对高热量食物刺激的冲动行为中的作用一致。由于来自低收入家庭的肥胖/超重学龄前儿童比正常体重学龄前儿童表现出更多的冲动性,并更喜欢高热量食物,我们的CMA发现表明,岛叶和扣带回等区域内较高的自发性脑活动可能通过影响与食物摄入相关的冲动行为,导致BMI的差异。此外,躯体运动和小脑区域fALFF的中介作用与它们在运动控制、感觉处理、奖励整合、冲动调节和进食协调中的作用一致。
尽管这些发现表明社会经济因素部分通过影响大脑活动(fALFF)来影响BMI,但值得注意的是,fALFF在认知表现对BMI间接效应的中介在大脑中表现出比家庭收入观察到的更广泛的模式。这表明区域大脑活动对认知与BMI关联间接效应的贡献超出了通过家庭收入中介的范围。这可能反映了除家庭收入外,多种因素对儿童认知的贡献,包括教育质量、接触的丰富性、营养、睡眠、体力活动和遗传等。我们的发现与公共卫生相关,因为它们表明为低收入家庭提供支持的干预和政策将改善认知表现和大脑发育,正如最近基于ABCD的研究所显示的。我们的发现还表明,支持父母如何提高儿童认知技能的预防干预可能有利于大脑发育并降低肥胖风险。这也表明,加强教育系统也可能有助于预防儿童肥胖。
我们的发现揭示了BMI和家庭收入之间的负相关,即使在正常体重个体中也存在。这表明BMI和社会经济地位之间的关联不仅限于肥胖,而是延伸到整个BMI值范围。几个因素可能促进这种更广泛的关系。高收入家庭可能更容易获得更健康的食物选择、体育活动机会和医疗资源,这些都有助于维持健康体重。此外,与高收入水平相关的更高教育程度可能导致更好的营养和健康知识与实践。环境因素也发挥作用,因为高收入家庭通常生活在拥有更多娱乐设施和更安全的体育活动环境的社区。此外,低收入家庭可能面临更高水平的压力和心理健康挑战,通过与压力相关的饮食行为和减少体育活动机会导致体重增加和更高的BMI。这些发现强调了在研究BMI和与体重相关的健康结果时考虑社会经济因素的重要性。旨在减少肥胖和改善整体健康的干预措施应考虑更广泛的社会经济背景,并解决影响BMI的资源、教育和环境因素方面的差异。
对于CMA模型1,fALFF的平均中介比例高于gFCD。这表明与功能连接相比,自发性脑活动可能对家庭收入和认知表现与BMI之间的关系有更强的影响。虽然这两种测量指标反映了大脑功能的不同方面,但中介比例的这种差异可能反映了这些大脑过程在调节饮食行为和代谢过程中的特定作用。CMA模型1显示出比CMA模型2更大的中介比例,这表明家庭收入和认知表现直接影响大脑活动和连接,从而增加它们与BMI的关联。我们的CMA发现还强调了童年期社会经济因素、大脑功能和BMI之间的复杂相互作用。虽然我们的因果中介分析表明存在认知损伤影响BMI的途径(CMA模型1),但重要的是要认识到这种关系可能是双向的,肥胖相关的代谢后果可能影响认知功能(CMA模型2)。此外,BMI和认知功能都可能受到其他因素的影响,如社会经济地位、生活方式选择或遗传倾向。因此,我们的发现不应被解释为得出青少年高BMI仅仅是由于认知缺陷的结论,而应该被视为影响认知和BMI的多种因素复杂相互作用的一部分。图5D中因果关系的方向可能看似反直觉。然而,在我们的分析中,我们使用总体认知得分作为认知刺激的代理。认知刺激,包括各种挑战和吸引大脑的活动,可以在关键发展期间对塑造和增强大脑连接性起到至关重要的作用。通过将认知得分表示为影响连接性,我们旨在强调这种关系的动态和互惠性质。认知刺激,反映在更高的认知表现得分中,可以导致大脑连接性的改善,就像强健的连接性可以支持更好的认知功能一样。这种双向关系强调了在理解大脑-行为相互作用时考虑影响的两个方向的重要性。
局限性
我们研究的其他限制包括参与者年龄范围有限,这可能限制了findings对大脑发育其他阶段的适用性。此外,应该注意到ABCD研究中非常低收入家庭的代表性不足,与更广泛的美国人口相比。虽然父母教育水平在较低层级之间与美国人口一致,但ABCD研究中取得学士学位的父母比例相对较高,与美国总体人口相比。本研究中大多数效应的量级相当小,它们主要由于ABCD数据集的非常大的样本量而达到统计学意义。BMI也与家庭收入呈负相关,即使在正常体重个体中也是如此,这些个体的BMI通常在15到20之间。这表明BMI和家庭收入之间的关联不仅仅是由肥胖驱动的,而是反映了影响整个BMI谱系个体的更广泛的社会经济影响。
结论:
总之,我们在9-10岁儿童中证明了BMI与认知表现、家庭收入、自发性脑活动以及功能和结构大脑连接之间一致的、适度的关联。认知表现不佳与BMI之间的关联部分反映了突显网络、躯体运动和小脑区域自发性脑活动的增加,这在来自低收入家庭的儿童中更为明显。虽然我们的数据表明低收入和认知损伤部分通过它们对大脑的影响来影响BMI,但这些关联可能也是双向的。高BMI,伴随其不利的代谢效应如神经炎症可能影响大脑和认知。