迈向自然主义神经科学:与休息和任务状态相比,观看电影时大脑层级扁平化背后的机制

大脑功能专化的研究已经从使用认知任务和静息态转向使用具有生态相关性的自然电影刺激。我们利用大规模神经影像数据集,直接研究了观看自然电影时与执行七项认知任务和静息状态相比,大脑功能活动的层级重组情况。基于热力学的全脑模型范式揭示了在不同条件下改变脑区间因果相互作用平衡的潜在机制。有趣的是,观影时的层级结构反而更加扁平,且不可逆性水平显著低于静息和任务状态,而后者则具有最高的层级性和不可逆性水平。这些潜在机制通过基于模型的生成性有效连接(GEC)得到揭示。因此,自然电影刺激可以为测量 GEC(整合功能和解剖连接)的重要变化提供一种快速便捷的方法,这在神经精神疾病等研究中具有应用价值。总体而言,本研究展示了向更自然主义神经科学发展的优势。本文发表在Science Advances杂志。

导言

      “电影是世界上最美丽的骗局。”——让-吕克·戈达尔。

     观看电影是数十亿人的挚爱消遣,动感的影像和声音常常以变革性的方式影响着我们的感受和思考。几乎所有人都会同意,观看充满自然主义、多模态动态的电影,其主观体验是高度引人入胜、令人舒缓的,并且与我们通常在日常休息时走神放空的心智状态截然不同。看电影的感觉也与我们常常在紧张工作和解决问题时的体验大相径庭,它更令人放松。这些在不同状态下不同认知负荷的主观体验必然与大脑动态变化相关联,对自然主义电影的研究已经产生了一些有趣的发现。然而,导致与观看自然刺激相关的认知运算发生变化的潜在神经机制尚不清楚。

      传统上,认知神经科学中,对人脑的神经影像学研究最初侧重于测量在使用严格控制的刺激、相对简单的参数化任务中诱发的局部脑活动。这些“定位主义”框架旨在将特定的认知过程分配给离散的脑区。这加深了我们对大脑如何解决复杂心理任务(例如工作记忆和奖赏机制)的理解,但与此同时,也意外地发现了一个在休息状态下比执行任务时更活跃的脑区网络。随着时间的推移,这逐渐发展成为一个蓬勃发展的研究领域,为自发静息态活动如何重现任务态活动提供了新的见解。然而,越来越清晰的是,该领域需要更贴近现实生活的刺激,以迫使大脑在更长的时间跨度内整合复杂的多模态刺激。有学者提议创建一门自然主义神经科学,专门研究大脑对诸如动态影像、语音和音乐等生态有效刺激的反应。

      因此,在过去的几十年里,使用自然主义电影作为研究大脑功能的工具已崭露头角。虽然最早的研究可追溯到 1954 年,当时研究人员记录了观看电影的受试者的脑电图 (EEG) 数据,但这在揭示脑活动时空动态方面提供的帮助有限。2004 年,两篇开创性的论文研究了与电影相关的时空脑活动,标志着认知神经科学的一个转折点。其中一项研究使用了塞尔吉奥·莱昂内的经典电影《黄金三镖客》来阐明皮层活动的受试者间同步性。Sonkusare 及其同事指出,使用复杂刺激对于理解大脑功能至关重要,他们认为自然主义电影模拟了日常生活中的体验。其他一些令人兴奋的研究方法使用了受试者间相位同步方法来揭示与任务的各种特征同步的脑网络,而这些特征并不总是能被任务的时间结构所预测 。

     因此,电影为静息态功能磁共振成像 (fMRI) 提供了一种替代方案,并在某些方面超越了后者,例如在年轻人群和临床人群中具有更高的重测信度和可接受性。然而,需要注意的是,当指涉媒体刺激时,“自然主义”这一总称可能具有误导性,因为电影在形式和功能上都经过了精心制作。

     包含在较慢叙事背景下的快速感知信息的自然主义电影,为识别大脑的关键组织目标之一(捕捉自然刺激的复杂多尺度动态)提供了一条清晰的路径。为了揭示这些目标,我们需要理解大脑在休息或解决问题时,认知运算需求是如何变化的,以及大脑如何重新配置专门脑区之间的沟通渠道。例如,当试图从视觉场景中提取运动特征时,大脑中专门的颞中回视觉区必须参与进来,并以不同的方式与相关网络进行沟通。同样,解决问题需要前额叶皮层根据任务的难度进行相应调整 (11, 12, 31–35)。因此,有学者提出,大脑是分层组织的,一组脑区(通常称为全局工作空间)协同工作,以协调最佳的脑部沟通和信息处理。研究表明,不同的状态会重新配置功能层次结构,例如,前额叶皮层会暂时凌驾于全局工作空间之上以解决特定的难题 。然而,目前尚不清楚与休息或解决认知任务相比,观看自然主义电影是如何重组功能层次结构的。

      为了解决这个问题,我们使用了一种名为梯度核心-外围结构(GCAT)的无模型方法来量化功能层次结构,该方法基于脑区在功能连接梯度上的位置。GCAT 将大脑组织描述为一个连续体,从核心到外围,核心由高度连接的中心枢纽组成,外围由更多专门化的区域组成。核心脑区通常被认为是全局工作空间的组成部分,协调来自不同感觉运动区域的信息流。GCAT(梯度核心-外围结构无模型)方法的优点在于它不需要预先假设大脑的组织结构,而是直接从数据中推导出层次结构。

      我们假设,与解决认知任务相比,观看电影会降低大脑的全局整合水平,从而导致功能层次结构趋于扁平化。为了验证这一假设,我们使用公开可用的多任务 fMRI 数据集,其中包括观看电影片段、静息态和执行七项不同认知任务的数据。我们首先使用 GCAT 量化了每种状态下的功能层次结构,然后比较了不同状态下核心脑区和外围脑区之间的连接强度。

     为了进一步探究观看电影对大脑动态的影响,我们使用了一种名为 INSIDEOUT 的无模型方法来量化神经活动的非平衡性。INSIDEOUT 框架不依赖于任何特定的模型,而是直接从时间序列数据中计算非平衡性。非平衡性被认为是大脑灵活性和适应性的一个关键指标,因为它反映了大脑偏离平衡状态的程度。我们假设,与解决认知任务相比,观看电影会增加大脑的非平衡性,因为它需要大脑处理更复杂和动态的刺激。

     我们的研究结果表明,与执行认知任务相比,观看电影确实会导致功能层次结构趋于扁平化,核心脑区和外围脑区之间的连接强度降低。此外,我们还发现,与执行认知任务相比,观看电影会增加大脑的非平衡性。这些结果表明,观看电影会改变大脑的组织方式,使其从一种高度整合的状态转变为一种更分散、更灵活的状态。这种转变可能反映了大脑对电影刺激的被动接受,以及对持续信息处理需求的降低。

     我们的研究结果为了解自然主义刺激如何影响大脑功能提供了新的见解。通过结合 GCAT (梯度核心-外围结构无模型)和 INSIDEOUT 这两种无模型方法,我们能够从不同的角度探究大脑的组织和动态。这些发现有助于解释为什么看电影会让人感到放松和引人入胜,并为未来研究自然主义刺激对大脑的影响奠定了基础。

编者注:一些术语的补充说明:

   GCAT (Gradient Core-periphery Architecture of the brain,梯度核心-外围结构无模型): 一种基于功能连接梯度来量化大脑功能层次结构的方法。它将大脑描述为从核心(高度连接的枢纽)到外围(更专门化的区域)的连续体。

     INSIDEOUT: 一种无模型方法,用于量化神经活动的非平衡性。它直接从时间序列数据中计算非平衡性,不依赖于任何特定的模型。

    无模型方法 (Model-free approach): 指的是不依赖于预先设定的模型,直接从数据中提取信息的方法。在这里,GCAT 和 INSIDEOUT 都是无模型方法,因为它们不依赖于关于大脑活动如何运作的特定假设。

     非平衡性 (Nonequilibrium): 指的是系统偏离平衡状态的程度。在神经科学中,非平衡性被认为是大脑灵活性和适应性的一个重要指标。

结果

      向更自然主义的神经科学发展需要新的先进方法,我们的总体目标是评估 GCAT(梯度核心-外围结构无模型) 框架在量化大脑功能层次变化方面的能力。这是通过结合使用无模型的非平衡率 (NR) 测量(捕捉细致平衡的破坏)和基于模型的方法(可以识别大脑状态特定变化背后的因果机制)来实现的。具体而言,我们将 GCAT 框架应用于观看自然主义电影、休息或解决认知任务的人类参与者的大规模神经影像数据。

GCAT (梯度核心-外围结构无模型) 框架描述

      图1总结了基于非平衡率 (NR) 热力学概念的总体框架,该框架可用于量化层级系统细致平衡的破坏程度。具体来说,图的上半部分显示了一个非层级系统,它处于细致平衡状态,因此随着时间的推移是完全可逆的。在热力学中,这意味着随时间推移的熵产生(S)等于零。熵产生被量化为系统动态演化向前和向后转移概率之间的 Kullback-Leibler 距离,因此是 NR(非平衡率) 的一种度量。

图片

图1. 用于发现层级组织潜在因果机制的 GCAT(梯度核心-外围结构无模型) 框架

     (A) 层级水平由大脑区域之间因果相互作用的不对称水平决定,这种不对称源于细致平衡的破坏。上子图显示了一个处于完全细致平衡的非层级系统,因此随着时间的推移是完全可逆的,即熵产生 (S) 没有变化。相反,下子图显示了熵产生的变化,反映了潜在因果相互作用的不对称性。

     (B) 估计时间箭头需要每个区域的正向时间序列(黑色)和时间反转时间序列(红色)。

     (C) 如何通过成对不对称水平使用正向 (x, y)(上行)和反转 [x(r), y(r)] 时间序列(下行)之间时间位移相关性的度量来计算 NR(非平衡率) 水平的基本原理。这些时间位移相关性之间的差异提供了区域对之间相互作用不对称性的量化(对于给定的位移 ∆t = T)。

     (D) 层级是通过对全脑成对 NR 的泛化来计算的,即作为一个包含所有区域对的矩阵。层级由 NR 矩阵给出,该矩阵是正向和反转时间序列的两个时间位移相关矩阵之间的差(在给定的位移时间点 ∆t = T;参见方法)。

     (E) NR (非平衡率) 矩阵用于拟合全脑模型,创建梯度边因果模型 (GEC),该模型提供潜在的因果机制(参见方法)。

     (F) NR 矩阵的平均值提供了层级的无模型估计,可以在不同条件下进行对比。

     (G) 通过渲染 GEC (梯度边因果模型)矩阵的入度和出度,可以提供对层级的进一步机制洞察。

编者注:一些术语的补充说明:

     细致平衡 (Detailed Balance): 在热力学中,细致平衡是指系统中每个基本过程与其逆过程以相等的速率发生的状态。

     熵产生 (Entropy Production): 系统中由于不可逆过程而产生的熵的增加。

   Kullback-Leibler 距离 (Kullback-Leibler Divergence): 用于衡量两个概率分布之间差异的一种度量。

    梯度边因果模型 (GEC, Gradient Edge Causal Model): 基于 NR 矩阵拟合的全脑模型,用于揭示大脑功能层次结构的潜在因果机制。

     入度 (In-degree): 指向某个节点的边的数量。在 GEC 矩阵中,入度表示一个脑区接收来自其他脑区的影响的程度。

     出度 (Out-degree): 从某个节点发出的边的数量。在 GEC 矩阵中,出度表示一个脑区对其他脑区施加影响的程度。

     在没有细致平衡的层级系统中,熵产生总是大于零(如图 1A 的下子图所示)。因此,这是对潜在因果相互作用不对称性的一种度量,即衡量细致平衡的破坏程度。换句话说,系统的层级可以通过直接评估非平衡率 (NR) 来量化。

     除了熵产生之外,Jarzynski 等人提出通过估计动态系统潜在信号中的时间箭头来测量 NR 水平。具体来说,他们的方法需要每个区域的正向时间序列和时间反转时间序列(通过翻转经验时间序列的时间顺序生成;参见图 1B 和方法)。然后,他们的方法使用机器学习来分类这两个时间序列是否可区分。如果它们不可区分,则没有时间箭头,系统是完全可逆的,反之亦然。

     在这里,我们提出了这种耗时的机器学习过程的一种变体。我们简单地通过计算两个时间序列之间时间位移相关性的度量来测量成对的时间不对称水平。图 1C 显示了如何计算成对 NR,即正向和反转时间序列的这些时间位移相关性之间差异的绝对值。换句话说,这量化了一个区域驱动另一个区域的程度,方法是提供区域对之间相互作用的不对称水平(对于给定的位移 ∆t = T;参见方法)。

     这使我们能够将大脑层级计算为成对 NR 对涉及所有区域对的矩阵的泛化,即覆盖大脑的所有区域。图 1D 显示了层级是如何简单地由 NR(非平衡率)  矩阵给出的,该矩阵是正向和反转时间序列的两个时间位移相关矩阵之间的差(在给定的位移时间点 ∆t = T;参见方法)。

     为了更深入地了解功能层级的生成原理,我们随后对这些经验的、无模型的度量进行了建模。图 1E 显示了如何通过使用伪梯度算法迭代估计梯度边因果模型 (GEC) 来将全脑模型拟合到经验 NR 矩阵(参见方法)。无模型功能层级的潜在变化(如图 1F 所示)可以通过基于模型的 GEC 矩阵直接量化,该矩阵提供了对涉及细致平衡破坏的信息流的直接洞察(图 1G)。

电影、休息和任务的功能层级的经验性、无模型变化

      我们评估了电影、休息和任务的功能层级的总体显著变化。如图 2A 所示,层级的直接比较表明,与休息 (P < 0.001, Wilcoxon) 和任务(所有七项任务的平均值,P < 0.001, Wilcoxon)相比,观看电影(所有部分的平均值)的层级明显更扁平(更低的 NR(非平衡率))。即使是休息和认知任务之间的差异也非常显著 (P < 0.001, Wilcoxon),休息状态的可逆性高于认知任务。这些结果表明,观看电影的 NR 水平与麻醉和深度睡眠(如最近论文中所量化)更相似,而不是与休息和任务相似。这种层级的扁平化表明动态库不如休息时活跃,这反过来最有可能反映了更少的计算。换句话说,扁平的层级反映了大脑区域之间不对称相互作用的减少,麻醉和深度睡眠中 NR 的减少反映了底层基质中定向信息流的减少,这与更少的计算需求相关。已经发现,在无意识状态(例如深度睡眠和麻醉)中发现的动态灵活性缺乏也反映在功能连接和解剖连接之间更强的相关性。换句话说,无意识的大脑活动更多地受到潜在解剖连接骨架的驱动。观看电影时也是如此,平均所有电影的功能连接 (FCallmovies) 和结构连接 (SC) 之间的相关性为 0.40,而平均所有休息的功能连接 (FC)allrest 和 SC 之间的相关性为 0.37。

图片

图 2. 电影、休息和任务的不同功能层级,我们估计了以 NR 水平为特征的功能层级。

     (A) 自然电影、休息和任务中层级的直接比较表明,与休息和任务(所有七项任务的平均值)相比,观看电影(所有部分的平均值)具有明显更扁平的层级(即更低的 NR)。休息的可逆性高于观看电影,但明显低于任务。

     (B) 观看电影的每个部分(使用 7-T fMRI 测量)的可逆性都明显低于休息。

     (C) 同样,所有七项认知任务(使用 3-T fMRI 测量)的可逆性都明显低于休息状态,这表明层级对计算的重要性。

    对观看好莱坞电影或开放版权电影(与休息相比)的每个部分的进一步分析表明,层级水平存在显著差异 (P < 0.001, Wilcoxon; 参见图 2B)。同样,图 2C 显示,七项认知任务中的每一项(使用 3-T fMRI 测量)的可逆性都明显低于休息状态 (P < 0.001, Wilcoxon)。认知任务期间层级的这种增加表明了特定的计算需求,这反映在认知中区域之间特定的不对称因果相互作用中。

全脑层级变化建模:梯度边因果模型 (GEC)

     我们超越了经验的、无模型的 NR 测量,构建了一个生成性全脑模型,使我们能够推断电影、休息和任务中层级变化的潜在因果机制。该全脑模型结合了解剖连接和局部动态来拟合经验功能数据。这些模型有很多种类(例如,脉冲模型、动态平均场模型和 Hopf 模型),并且可以拟合许多不同的经验可观测量(功能连接 (FC) 和动态功能连接)。至关重要的是,我们在这里使用 Hopf 模型(因为已证明它可以提供最佳拟合)和 NR 的无模型可观测量来识别层级组织。更具体地说,图 3A 显示了拟合全脑模型的过程,最初使用解剖连接,然后迭代调整 GEC,GEC 是现有解剖连接的权重。为了研究先前未知可观测量的影响,我们首先使用仅拟合经验 FC 的传统方法执行了此拟合过程,这产生了 GEC 矩阵 GFC。其次,我们还将全脑模型拟合到 FC 和 NR 矩阵,这产生了 GEC 矩阵 GNR(参见方法)。

图片

图 3. 全脑模型提供了对电影观看功能层级的因果洞察

该图显示了如何在观看电影时识别导致不同层级水平(即 NR)的潜在因果机制。

     (A) 该过程首先拟合全脑模型,最初使用解剖连接,然后根据仅将此拟合到经验 FC (GFC) 或包括 NR (GNR) 矩阵来迭代调整 GEC。

     (B) 上行显示了基于仅使用 FC 优化的全脑模型的优化,而下行显示了相同但包括使用 NR 优化的优化。从最左边的面板中可以看出,学习的演变提高了两种情况下对 FC 的拟合水平(经验矩阵和模拟矩阵之间的相关性,黑色曲线),但仅拟合 FC 并不能很好地拟合经验 NR(参见红色曲线)。面板的第二列显示了优化的 GEC 矩阵(GFC 和 GNR)。虽然难以辨别,但前者是对称的,而后者是不对称的,如下所述。面板的第三列显示了模拟的 NR 矩阵,对经验 NR 的拟合水平显示在面板第四列的散点图中。很明显,只有 GNR 优化能够捕获经验 NR 的水平,从而捕获层级。

     (C) 最左边的图量化了 GNR 的不对称水平。从箱线图中可以看出,GFC 没有不对称性,但 GNR 具有很强的非对称性。插图中进一步探讨了这一点,该插图显示了许多不对称的大脑区域对。最后,我们使用完整矩阵和阈值化矩阵将这些不对称性可视化。

     图 3B 显示,只有拟合到 NR 矩阵才能对经验 NR 水平产生可接受的拟合(比较上行和下行)。具体来说,最左边的图表显示了拟合到 FC(上)和拟合到 FC 和 NR(下)时拟合水平随时间的演变。经验矩阵和模拟矩阵之间的相关性由黑色(FC)和红色(NR)曲线表示。在这两种情况下,我们都发现了模型对 FC 的良好拟合水平(黑色曲线)。但是,只有使用 FC 和 NR 拟合模型时,我们才能获得对经验 NR 的良好拟合水平(请参见下图中红色曲线的收敛和上图中的不收敛)。这一重要发现表明,全脑模型需要明确拟合经验 NR(非平衡率) 水平才能解释这一可观测量,从而捕获功能层级背后的机制。

     在检查拟合过程的结果时,也可以看到此结果的重要性,在显示优化 GEC 矩阵(GFC 和 GNR)的第二列面板中。同样,第三列面板显示了模拟的 NR 矩阵,而对经验 NR 的拟合水平显示在第四列面板的散点图中。可以看出,只有 GNR 优化能够捕获经验 NR 的水平,从而捕获层级。

     该图显示了全脑模型能够捕获层级的原因,即由于在 GEC 矩阵 GNR 中发现的潜在不对称性。图 3C 显示了一个箱线图,表明 GFC 缺乏不对称性,但 GNR 具有很强的非对称性。插图显示存在许多不对称的大脑区域对,这些区域对通过完整矩阵差异和阈值化矩阵差异的渲染来可视化(最右边的面板;参见方法)。

发现电影、休息和任务中层级变化相关的潜在区域

      不同大脑区域之间的信息流由将全脑模型拟合到经验 FC 和 NR 数据得到的 GEC 矩阵捕获。反过来,这提供了对在不同条件下充当驱动器和接收器的区域的精确描述。更具体地说,可以从 GEC 矩阵中识别这些区域。接收器可以确定为传入信息 Gin,由 GEC 矩阵的入度给出,而驱动器可以确定为传出信息 Gout,由 GEC 矩阵的出度给出。类似地,协调的度量由传入和传出信息的总和 Gtotal = Gin + Gout 给出。

     对于所有条件,图 4A 显示了接收器(传入 Gin)、驱动器(传出 Gout)及其总和 (Gtotal) 的渲染图。该图显示了与休息(更橙色)和任务(最强黄色)相比,电影观看(更深红色)中层级明显扁平化。这扩展了上面报告的无模型结果,该结果发现了条件的平均总数之间的差异。在这里,使用 GEC(梯度边因果模型),我们能够精确定位驱动层级变化的区域拓扑差异。这些结果进一步加强了这样一种解释,即与休息和执行任务时相比,大脑在观看电影时执行的计算更少。

图 4. 识别电影、休息和任务中层级变化的潜在因果驱动因素

       我们可以通过使用 GEC(梯度边因果模型) 矩阵来确定驱动器和接收器方面的信息流,GEC 矩阵是通过使用电影、休息和任务的全脑模型(拟合到 NR 和 FC 的无模型测量)获得的。这提供了对潜在大脑层级的直接测量。

     (A) 对于所有条件,这些图显示了接收器(传入,Gin)、驱动器(传出,Gout)及其总和 (Gtotal)。层级由颜色渐变给出,可以看出,电影的层级(更深的红色)明显低于休息(橙色)和任务(最强黄色)。

    (B) 电影与休息相比层级的降低可以通过渲染它们各自 Gtotal 之间的差异来明确显示。从颜色图中可以看出,其中负值更蓝,正值更黄,只有前额叶和一些视觉区域在电影中比休息时更强。换句话说,虽然电影中的一般层级是扁平的,但前额叶和视觉区域在电影中更不可逆,这表明这些区域执行的计算驱动了观看电影时细致平衡的破坏。相反,在比较所有任务的平均 Gtotal 与休息时,任务的一般层级明显更大,并且计算的主要驱动因素再次主要在前额叶区域中发现。

     (C) 为了确认前额叶皮层在驱动细致平衡破坏中的作用,我们计算了 (B) 中显示的对比度的前 50% 区域的交集。这表明主要是前额叶区域(以及一些顶叶、视觉和颞叶)是协调大脑计算的共同驱动因素。

     电影观看与休息之间以及认知任务与休息之间的显著拓扑差异在图 4B 中进一步量化。与休息相比,电影的层级显著降低,这可以通过渲染它们各自 Gtotal 之间的差异来明确显示。从左侧的彩色图可以看出,除了前额叶和视觉区域外,观看电影比休息时更平衡。这表明了一个违反直觉的发现,即休息比观看电影涉及更多的计算,这可能是我们想要观看电影的原因。然而,前额叶皮层仍然比休息时更不可逆,这反映了细致平衡的破坏是由这些前额叶区域协调的。图 4B 右侧显示的发现强化了这一发现,即任务的一般层级明显大于休息,其中细致平衡破坏的主要驱动因素再次主要在前额叶区域中发现。

     图 4C 量化了关于前额叶皮层在计算和驱动细致平衡破坏中的作用的这一重要发现。为了识别电影观看和认知任务中的共同驱动因素,我们选择了图 4B 中对比度的前 50% 区域,并计算了两个对比度的交集。我们发现,主要是前额叶区域[双侧额上回、喙侧额中回、额下回(三角部)、尾侧额中回和左侧眶额叶皮层]以及右侧喙侧前扣带回、左侧顶上小叶、右侧颞中回和外侧枕叶皮层是协调大脑计算的主要驱动因素。

GEC(梯度边因果模型)矩阵的分类效果明显更好

     GEC 矩阵提供了给定条件下的因果机制原则,因此可用于揭示计算的主要驱动因素。因此,它应该非常适合对给定条件进行分类。为了测试这一点,我们使用机器学习[使用支持向量机 (SVM) 分类器],使用 GEC 或 FC 对电影观看与休息进行分类,并在不同类型的电影(好莱坞或 Vimeo 上的开放许可)之间进行比较。图 5A 显示了分类性能(100 倍交叉验证)的箱线图和相关的平均混淆矩阵(参见方法)。结果表明,使用 GEC(梯度边因果模型) 进行分类比使用 FC 进行分类要好得多。在每种情况下,性能数字都显示在图上。这种改进是由于 GEC 矩阵是一个捕获因果相互作用不对称性的生成性度量,而 FC 矩阵是对称的,捕获功能相关性。

图片

图 5. GEC (梯度边因果模型)非常适合对电影观看进行分类

      我们使用机器学习来使用 GEC 或 FC 对电影观看与休息以及不同电影之间进行分类。    

      (A) 该图显示了分类性能(100 倍交叉验证)的箱线图和相关的平均混淆矩阵。可以看出,使用 GEC 进行分类比使用 FC 进行分类要好得多(性能数字显示在图上)。

     (B) 同样,使用 GEC 对特定电影片段(好莱坞或 Vimeo 上的 CC 许可)进行分类也比使用 FC 要好得多。在这里,使用 GEC 进行分类明显优于使用 FC。可以看出,GEC 的平均性能为 93.4%,而使用 FC 的平均性能接近随机水平 (62.7%)。总体而言,GEC 提供了给定条件下的因果机制原则,因此非常适合对该条件进行分类。

     同样,如图 5B 所示,GEC 矩阵在对特定电影片段进行分类方面比 FC 矩阵好得多。GEC 的平均性能为 93.4%,而使用 FC 的平均性能接近随机水平 (62.7%)。

讨论

      在过去的一个世纪里,神经科学已经开始揭示关于大脑功能特化的许多信息,但我们才刚开始确定协调大脑计算所需的全脑层级组织。随着时间的推移,研究重点已从使用相对简单的参数化认知任务转向使用更具生态效度的自然刺激,例如电影。在这里,我们使用受热力学启发的 GCAT(梯度核心-外围结构无模型) 框架,在一个大规模神经影像数据集中直接确定由自然电影(与休息和参数化认知任务相比)引起的计算所涉及的大脑层级。该框架通过评估 NR(非平衡率) 水平(即时间箭头)以无模型和基于模型的方式直接测量了经验数据中的层级。

     基于模型的发现与无模型的结果完全一致,揭示了与认知任务和休息相比,电影观看的层级更扁平。认知任务比休息和观看电影涉及更多的计算,层级水平明显更高。然而,至关重要的是,通过全脑建模(拟合到 NR 的无模型测量)获得的 GEC(梯度边因果模型) 矩阵揭示了导致经验层级的因果相互作用,即 NR 水平。特别是,我们能够识别电影观看和认知任务中的共同驱动因素,这些驱动因素主要在前额叶区域(双侧额上回、喙侧额中回、额下回三角部、尾侧额中回和左侧眶额叶皮层)。这为关于前额叶区域的大量文献提供了因果见解,这些文献表明前额叶皮层对于复杂问题所需的灵活计算至关重要。这也与关于心智游移和自发思维的大量文献非常吻合,其中 Christoff 等人的一篇非常有影响力的综述指出,以眶额叶皮层为中心的功能网络是心智游移的主要驱动因素。此外,鉴于眶额叶皮层在享乐处理和动机中的作用,它同时是电影观看和解决认知任务的驱动区域,这一点非常重要。

     此外,我们还能够证明,非对称的生成式 GEC (梯度边因果模型) 矩阵在条件分类方面比相关的 FC 矩阵要好得多。特别是,GEC 矩阵在区分不同条件(电影观看和休息)以及电影条件(好莱坞与开放版权电影)方面要好得多。

使用热力学框架推断生成层级

     这里报告的发现为大脑功能的生成层级提供了证据,从而极大地扩展了过去一百年来神经科学领域的研究。先前的研究令人信服地证明,大脑的解剖结构是跨尺度(从单个单元到更大的回路)分层组织的。同样清楚的是,这种固定的解剖结构反映在大脑的功能组织中,导致大脑具有清晰的拓扑组织和某些功能特化。然而,要发现功能层级组织的真正丰富性,需要先进的方法来估计大脑区域之间的信息流动,这为大脑执行的必要计算协调提供了支架。

     以前,在超越解剖限制来描述功能活动的丰富性方面,Marsel Mesulam 是最早提出解剖连接如何导致大脑处理由整合跨模式区域协调的不同单峰区域层级塑造的人之一 。最近,这个想法被 Margulies 等人使用功能性神经影像进一步扩展,他们提供了关于层级处理的梯度视角,而 Atasoy 等人提供了基于自然界中普遍存在的谐波模式概念的更广义视角。同样,Northoff 等人 提出了类似的层级核心-边缘原则。这使他们证明了在休息期间时间和空间层级的收敛,与任务相比,这种收敛会发生变化,这与这里提出的发现一致。

     然而,关于功能层级大脑组织的更强有力的证据只能来自使用传递熵和格兰杰因果关系的版本直接估计大脑区域之间因果相互作用的方法。使用归一化定向传递熵 (NDTE) 的一个版本是量化协调大脑功能的“全局工作空间”概念的关键,其中信息在一个小的脑区域组中整合,然后广播到整个大脑的许多其他区域。因此,全局工作空间可以被认为是层级系统的典型例子,类似于负责一个大型组织的一小组核心人员。这种更大的大脑网络组织已被证明是高效、稳健且在很大程度上容错的

     使用 NDTE (归一化定向传递熵)框架可以识别用于协调功能层级组织的全局工作空间,其中包括左侧楔前叶、左侧伏隔核、左侧壳核、左侧后扣带回皮层、右侧海马体、右侧杏仁核以及左侧和右侧峡部扣带回。在全脑模型中损毁这些区域会破坏功能层级组织。

     然而,使用 NDTE 和其他相关方法计算直接因果相互作用是一个耗时的过程,并且依赖于拥有大型数据集。在这里,我们通过使用一个高效且稳健的、受热力学启发的 GCAT(梯度核心-外围结构无模型)框架改进了现有技术,该框架提供了两种互补的层级量化方法:一种无模型的间接层级测量方法(作为 NR 水平),它反过来又为基于模型的直接量化导致层级组织的因果相互作用提供了可观察量。

     因此,就其本质而言,这里开发的 GCAT 框架提供了在不同条件下大脑 NR(非平衡率) 的测量方法,并允许精确识别参与打破平衡和底层网络之间净通量的脑区域。这里使用的 INSIDEOUT 方法可以用来揭示大脑状态的层级组织,并且已经证明它可以捕获时间序列的因果关系[如 Deco 等人 (39) 的论文中的图 S4 所示]。时间序列的因果测量有着悠久的历史,文献中关于在血氧水平依赖 (BOLD) 时间序列上使用这些测量的适当性存在相当多的争论,因为这可能会受到不同脑区域之间血液动力学反应变异性的影响。同时,也已经表明,因果时间序列方法在采样足够快且测量噪声低的情况下表现得更好。在这里,我们使用最先进的 HCP 数据,重复时间 (TR) 为 0.78 秒(对于 3T 数据)和 1.0 秒(对于 7T 数据),提供了对血液动力学反应函数的出色子采样。这减少了由于 TR 过长而导致采样不足的任何潜在问题,这些问题可能导致虚假和无法检测的因果关系以及相对强度的失真。

     直觉上,观看电影似乎比休息时涉及更多的计算,因此会涉及更陡峭的层级组织。然而,这里进行的实证分析表明情况并非如此。相反,我们发现在观看电影时大脑层级会变扁平,这可能是为什么看电影是许多人喜欢的休闲消遣的原因之一。也许令人惊讶的是,休息并不是特别受欢迎,Killingsworth 和 Gilbert 表明,内省和心智游移状态很少会导致快乐的心情,可能是因为休息会导致思考没有发生的事情,这涉及到大量的、通常是不受欢迎的计算。相比之下,电影观看提供了一种理想的视听叙事,其中必要的计算量很小。因此,在研究年轻人群和临床人群时,自然电影可能是比休息更好的选择,特别是因为自然电影还具有更高的重测信度。

     总的来说,所提出的框架提供了对不同条件下大脑层级复杂变化背后因果机制的重要无模型和基于模型的见解。这为利用向更自然主义的神经科学的转变提供了急需的工具,这反过来将有利于我们理解大脑如何在其自然生态环境中运作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值