[简单博弈] hdu 1525 Euclid's Game

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1525

Euclid's Game

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1832    Accepted Submission(s): 808


Problem Description
Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtracts any positive multiple of the lesser of the two numbers from the greater of the two numbers, provided that the resulting number must be nonnegative. Then Ollie, the second player, does the same with the two resulting numbers, then Stan, etc., alternately, until one player is able to subtract a multiple of the lesser number from the greater to reach 0, and thereby wins. For example, the players may start with (25,7): 

25 7
11 7
4 7
4 3
1 3
1 0 

an Stan wins. 

 

Input
The input consists of a number of lines. Each line contains two positive integers giving the starting two numbers of the game. Stan always starts.
 

Output
For each line of input, output one line saying either Stan wins or Ollie wins assuming that both of them play perfectly. The last line of input contains two zeroes and should not be processed. 

 

Sample Input
  
  
34 12 15 24 0 0
 

Sample Output
  
  
Stan wins Ollie wins
 

Source
 

Recommend
LL   |   We have carefully selected several similar problems for you:   1536  1524  1404  1527  1846 

题目意思:

两个人,两堆石头,玩游戏。每次从石头数多的那堆中拿走石头数少的那堆石头的个数的倍数个,保证拿了过后不能为负数。谁恰好使其中一堆石头数为0,谁使其中某一堆石头为0,谁赢。两人都足够聪明。

解题思路:

借助欧几里得算法的博弈。

显然如果a>b 且a>2*b  先拿者必赢 因为他可以决定是自己还是对手遇到状态(a%b,b)如果状态(a%b,b)为必输状态,他就让对手面对(拿走a-a%b个)。如果为必赢状态,他就自己面对(拿走-a%b-b个).

如果b<a<=2*b 只能到达(a%b,b)的状态。

代码:

//#include<CSpreadSheet.h>

#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#include<cmath>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

int gcd(ll a,ll b)
{
    if(a<b) //求出谁大
        swap(a,b);
    if(b==0) //终止 必输状态
        return 0;
    if(a>2*b) //必胜
        return 1;

    return gcd(b,a%b)^1; //和拿了之后的输赢情况相反
}

int main()
{
   //freopen("in.txt","r",stdin);
   //freopen("out.txt","w",stdout);
   ll a,b;

   while(scanf("%I64d%I64d",&a,&b))
   {
       if(!a&&!b)
          break;
       int ans=gcd(a,b);

       if(ans)
            printf("Stan wins\n");
       else
            printf("Ollie wins\n");
   }
   return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值